메뉴 건너뛰기




Volumn , Issue , 2012, Pages 171-172

Deep networks for predicting human intent with respect to objects

Author keywords

deep architectures; human robot interaction; intention modeling

Indexed keywords

AUTOENCODERS; DE-NOISING; HUMAN INTENTIONS; INTENT RECOGNITION; INTENTION MODELING; SYSTEM'S PERFORMANCE;

EID: 84860015550     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2157689.2157740     Document Type: Conference Paper
Times cited : (19)

References (6)
  • 1
    • 34547841279 scopus 로고    scopus 로고
    • Prediction of intent in robotics and multi-agent systems
    • DOI 10.1007/s10339-007-0168-9, Anticipation and Anticipatory Behavior
    • Y. Demiris. Prediction of intent in robotics and multi-agent systems. Cognitive Processing, 8(3):151-158, September 2007. (Pubitemid 47245942)
    • (2007) Cognitive Processing , vol.8 , Issue.3 , pp. 151-158
    • Demiris, Y.1
  • 6
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • December
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11:3371-3408, December 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.