메뉴 건너뛰기




Volumn 25, Issue 13, 2012, Pages 4523-4548

Quantifying uncertainty for climate change and long-range forecasting scenarios with model errors. Part I: Gaussian models

Author keywords

Climate models; Climate sensitivity; Model errors; Statistical forecasting

Indexed keywords

CLIMATE CHANGE SCENARIOS; CLIMATE SCIENCE; CLIMATE SENSITIVITY; COARSE GRAINING; EXTERNAL PERTURBATIONS; GAUSSIAN MODEL; INITIAL CONDITIONS; LINEAR GAUSSIAN MODEL; LONG-RANGE FORECASTING; LONG-RANGE FORECASTS; MODEL ERRORS; NON-GAUSSIAN; PASSIVE TRACERS; PERIODIC MODELS; PHYSICAL SYSTEMS; RELATIVE ENTROPY; ROSSBY WAVE; SEASONAL CYCLE; SEASONAL FLUCTUATIONS; SPATIALLY EXTENDED SYSTEMS; STATISTICAL FORECASTING; STOCHASTIC FORCING; SYSTEMATIC FRAMEWORK; THREE MODELS; TURBULENT FIELDS;

EID: 84859558963     PISSN: 08948755     EISSN: None     Source Type: Journal    
DOI: 10.1175/JCLI-D-11-00454.1     Document Type: Article
Times cited : (16)

References (39)
  • 1
    • 16244415816 scopus 로고    scopus 로고
    • Quantifying uncertainty for non-Gaussian ensembles in complex systems
    • doi:10.1137/S1064827503426310.
    • Abramov, R. V., and A. Majda, 2004: Quantifying uncertainty for non-Gaussian ensembles in complex systems. SIAM J. Sci. Comput., 26, 411-447, doi:10.1137/S1064827503426310.
    • (2004) SIAM J. Sci. Comput. , vol.26 , pp. 411-447
    • Abramov, R.V.1    Majda, A.2
  • 2
    • 13244267227 scopus 로고    scopus 로고
    • Information theory and predictability for low-frequency variability
    • Abramov, R. V., A. J. Majda, and R. Kleeman, 2005: Information theory and predictability for low-frequency variability. J. Atmos. Sci., 62, 65-87.
    • (2005) J. Atmos. Sci. , vol.62 , pp. 65-87
    • Abramov, R.V.1    Majda, A.J.2    Kleeman, R.3
  • 3
    • 0016355478 scopus 로고
    • Anew look at the statistical model identification
    • Akaike, H., 1974:Anew look at the statistical model identification. IEEE Trans. Automat. Contr., 19, 716-723.
    • (1974) IEEE Trans. Automat. Contr. , vol.19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 78650576963 scopus 로고    scopus 로고
    • Two limits of initial-value decadal predictability in a CGCM
    • Branstator, G., and H. Teng, 2010: Two limits of initial-value decadal predictability in a CGCM. J. Climate, 23, 6292-6311.
    • (2010) J. Climate , vol.23 , pp. 6292-6311
    • Branstator, G.1    Teng, H.2
  • 6
    • 8744221249 scopus 로고    scopus 로고
    • Predictability and information theory. Part I: Measures of predictability
    • DelSole, T., 2004: Predictability and information theory. Part I: Measures of predictability. J. Atmos. Sci., 61, 2425-2440.
    • (2004) J. Atmos. Sci. , vol.61 , pp. 2425-2440
    • DelSole, T.1
  • 7
    • 27744599207 scopus 로고    scopus 로고
    • Predictability and information theory. Part II: Imperfect models
    • DelSole, T, 2005: Predictability and information theory. Part II: Imperfect models. J. Atmos. Sci., 62, 3368-3381.
    • (2005) J. Atmos. Sci. , vol.62 , pp. 3368-3381
    • DelSole, T.1
  • 8
    • 77958100090 scopus 로고    scopus 로고
    • Model fidelity versus skill in seasonal forecasting
    • DelSole, T, and J. Shukla, 2010: Model fidelity versus skill in seasonal forecasting. J. Climate, 23, 4794-4806.
    • (2010) J. Climate , vol.23 , pp. 4794-4806
    • DelSole, T.1    Shukla, J.2
  • 11
    • 78650533520 scopus 로고    scopus 로고
    • Filtering a statistically exactly solvable test model for turbulent tracers from partial observations
    • doi:10.1016/j.jcp. 2010.11.024.
    • Gershgorin, B., and A. Majda, 2011: Filtering a statistically exactly solvable test model for turbulent tracers from partial observations. J. Comput. Phys., 230, 1602-1638, doi:10.1016/j.jcp. 2010.11.024.
    • (2011) J. Comput. Phys. , vol.230 , pp. 1602-1638
    • Gershgorin, B.1    Majda, A.2
  • 12
    • 70350427663 scopus 로고    scopus 로고
    • Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation
    • doi:10.1016/j.jcp.2009.09.022.
    • Gershgorin, B, J. Harlim, and A. Majda, 2010a: Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation. J. Comput. Phys., 229, 32-57, doi:10.1016/j.jcp.2009.09.022.
    • (2010) J. Comput. Phys. , vol.229 , pp. 32-57
    • Gershgorin, B.1    Harlim, J.2    Majda, A.3
  • 13
    • 70350425221 scopus 로고    scopus 로고
    • Test models for improving filtering with model errors through stochastic parameter estimation
    • doi:10.1016/j.jcp.2009.08.019.
    • Gershgorin, B, J. Harlim, and A. Majda, 2010b: Test models for improving filtering with model errors through stochastic parameter estimation. J. Comput. Phys., 229, 1-31, doi:10.1016/j.jcp.2009.08.019.
    • (2010) J. Comput. Phys. , vol.229 , pp. 1-31
    • Gershgorin, B.1    Harlim, J.2    Majda, A.3
  • 14
    • 84858613589 scopus 로고    scopus 로고
    • Quantifying the predictive skill in long-range forecasting. Part I: Coarse-grained predictions in a simple ocean model
    • Giannakis, D., and A. J. Majda, 2012a: Quantifying the predictive skill in long-range forecasting. Part I: Coarse-grained predictions in a simple ocean model. J. Climate, 25, 1793-1813.
    • (2012) J. Climate , vol.25 , pp. 1793-1813
    • Giannakis, D.1    Majda, A.J.2
  • 15
    • 84858599251 scopus 로고    scopus 로고
    • Quantifying the predictive skill in longrange forecasting. Part II: Model error in coarse-grained Markov models with application to ocean-circulation regimes
    • Giannakis, D., and A. J. Majda, 2012b: Quantifying the predictive skill in longrange forecasting. Part II: Model error in coarse-grained Markov models with application to ocean-circulation regimes. J. Climate, 25, 1814-1826.
    • (2012) J. Climate , vol.25 , pp. 1814-1826
    • Giannakis, D.1    Majda, A.J.2
  • 16
    • 34547816534 scopus 로고    scopus 로고
    • Climate response using a threedimensional operator based on the fluctuation-dissipation theorem
    • Gritsun, A., andG.Branstator, 2007:Climate response using a threedimensional operator based on the fluctuation-dissipation theorem. J. Atmos. Sci., 64, 2558-2575.
    • (2007) J. Atmos. Sci. , vol.64 , pp. 2558-2575
    • Gritsun, A.1    Branstator, G.2
  • 17
    • 56849093930 scopus 로고    scopus 로고
    • Climate response of linear and quadratic functionals using the fluctuation-dissipation theorem
    • Gritsun, A., andG.Branstator, and A. Majda, 2008: Climate response of linear and quadratic functionals using the fluctuation-dissipation theorem. J. Atmos. Sci., 65, 2824-2841.
    • (2008) J. Atmos. Sci. , vol.65 , pp. 2824-2841
    • Gritsun, A.1    Branstator, G.2    Majda, A.3
  • 18
    • 0000316389 scopus 로고
    • Stochastic climate models, Part I: Theory
    • Hasselman, K., 1976: Stochastic climate models, Part I: Theory. Tellus, 28, 473-485.
    • (1976) Tellus , vol.28 , pp. 473-485
    • Hasselman, K.1
  • 19
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • Jaynes, E. T., 1957: Information theory and statistical mechanics. Phys. Rev., 106, 620-630.
    • (1957) Phys. Rev. , vol.106 , pp. 620-630
    • Jaynes, E.T.1
  • 20
    • 0036646756 scopus 로고    scopus 로고
    • Measuring dynamical prediction utility using relative entropy
    • Kleeman, R., 2002: Measuring dynamical prediction utility using relative entropy. J. Atmos. Sci., 59, 2057-2072.
    • (2002) J. Atmos. Sci. , vol.59 , pp. 2057-2072
    • Kleeman, R.1
  • 21
    • 79953742363 scopus 로고    scopus 로고
    • Information theory and dynamical system predictability
    • doi:10.3390/e13030612.
    • Kleeman, R., 2011: Information theory and dynamical system predictability. Entropy, 13, 612-649, doi:10.3390/e13030612.
    • (2011) Entropy , vol.13 , pp. 612-649
    • Kleeman, R.1
  • 22
    • 0037180483 scopus 로고    scopus 로고
    • Quantifying predictability in a model with statistical features of the atmosphere
    • 296, doi:10.1073/pnas.192583699.
    • Kleeman, R., A. Majda, and I. Timofeyev, 2002: Quantifying predictability in a model with statistical features of the atmosphere. Proc. Natl. Acad. Sci. USA, 99, 15 291-15 296, doi:10.1073/pnas.192583699.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , Issue.15 , pp. 291-215
    • Kleeman, R.1    Majda, A.2    Timofeyev, I.3
  • 23
    • 0001927585 scopus 로고
    • On information and sufficiency
    • doi:10.1214/aoms/1177729694.
    • Kullback, S., and R. Leibler, 1951: On information and sufficiency. Ann. Math. Stat., 22, 79-86, doi:10.1214/aoms/1177729694.
    • (1951) Ann. Math. Stat. , vol.22 , pp. 79-86
    • Kullback, S.1    Leibler, R.2
  • 25
    • 77957005765 scopus 로고    scopus 로고
    • Quantifying uncertainty in climate change science through empirical information theory
    • 963, doi:10.1073/pnas.1007009107.
    • Majda, A. J., and B. Gershgorin, 2010: Quantifying uncertainty in climate change science through empirical information theory. Proc. Natl. Acad. Sci. USA, 107, 14 958-14 963, doi:10.1073/pnas.1007009107.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , Issue.14 , pp. 958-914
    • Majda, A.J.1    Gershgorin, B.2
  • 26
    • 77949669181 scopus 로고    scopus 로고
    • Linear response theory for statistical ensembles in complex systems with time-periodic forcing
    • Majda, A. J., and X. Wang, 2010: Linear response theory for statistical ensembles in complex systems with time-periodic forcing. Comm. Math. Sci., 8, 145-172.
    • (2010) Comm. Math. Sci. , vol.8 , pp. 145-172
    • Majda, A.J.1    Wang, X.2
  • 27
    • 79959988672 scopus 로고    scopus 로고
    • Improving model fidelity and sensitivity for complex systems through empirical information theory
    • doi:10.1073/pnas.1105174108.
    • Majda, A. J., and B. Gershgorin, 2011a: Improving model fidelity and sensitivity for complex systems through empirical information theory. Proc. Natl. Acad. Sci. USA, 108, 10 044-10 049, doi:10.1073/pnas.1105174108.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , Issue.10
    • Majda, A.J.1    Gershgorin, B.2
  • 28
    • 79961230409 scopus 로고    scopus 로고
    • Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error
    • doi:10.1073/pnas.1108132108.
    • Majda, A. J., and B. Gershgorin, 2011b: Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error. Proc. Natl. Acad. Sci. USA, 108, doi:10.1073/pnas.1108132108.
    • (2011) Proc. Natl. Acad. Sci. USA , pp. 108
    • Majda, A.J.1    Gershgorin, B.2
  • 29
    • 79960015578 scopus 로고    scopus 로고
    • Elementary models for turbulent diffusion with complex physical features: Eddy diffusivity, spectrum, and intermittency
    • in press.
    • Majda, A. J., and B. Gershgorin, 2012: Elementary models for turbulent diffusion with complex physical features: Eddy diffusivity, spectrum, and intermittency. Philos. Trans. Roy. Soc., in press.
    • (2012) Philos. Trans. Roy. Soc.
    • Majda, A.J.1    Gershgorin, B.2
  • 30
    • 8744297806 scopus 로고    scopus 로고
    • A mathematical framework for predictability through relative entropy
    • Majda, A. J., R. Kleeman, and D. Cai, 2002a: A mathematical framework for predictability through relative entropy. Methods Appl. Anal., 9, 425-444.
    • (2002) Methods Appl. Anal. , vol.9 , pp. 425-444
    • Majda, A.J.1    Kleeman, R.2    Cai, D.3
  • 31
    • 0037105977 scopus 로고    scopus 로고
    • A priori tests of a stochatic mode reduction strategy
    • Majda, A. J., I. I. Timofeyev, and E. Vanden Eijnden, 2002b: A priori tests of a stochatic mode reduction strategy. Physica D, 170, 206.
    • (2002) Physica D , vol.170 , pp. 206
    • Majda, A.J.1    Timofeyev, I.I.2    Vanden Eijnden, E.3
  • 33
    • 77949738950 scopus 로고    scopus 로고
    • Low-frequency climate response and fluctuation-dissipation theorems: Theory and practice
    • Majda, A. J., B. Gershgorin, and Y. Yuan, 2010a: Low-frequency climate response and fluctuation-dissipation theorems: Theory and practice. J. Atmos. Sci., 67, 1186.
    • (2010) J. Atmos. Sci. , vol.67 , pp. 1186
    • Majda, A.J.1    Gershgorin, B.2    Yuan, Y.3
  • 34
    • 77953299631 scopus 로고    scopus 로고
    • Mathematical strategies for filtering turbulent dynamical systems
    • doi:10.3934/dcds.2010.27.441.
    • Majda, A. J., J. Harlim, and B. Gershgorin, 2010b: Mathematical strategies for filtering turbulent dynamical systems. Discrete Contin. Dyn. Sys., 27, 441-486, doi:10.3934/dcds.2010.27.441.
    • (2010) Discrete Contin. Dyn. Sys. , vol.27 , pp. 441-486
    • Majda, A.J.1    Harlim, J.2    Gershgorin, B.3
  • 35
    • 33646555831 scopus 로고    scopus 로고
    • Tropical drying trends in global warming models and observations
    • doi:10.1073/pnas.0601798103.
    • Neelin, J. D., M. Munnich, H. Su, J. Meyerson, and C. Holloway, 2006: Tropical drying trends in global warming models and observations. Proc. Natl. Acad. Sci. USA, 103, 6110-6115, doi:10.1073/pnas.0601798103.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 6110-6115
    • Neelin, J.D.1    Munnich, M.2    Su, H.3    Meyerson, J.4    Holloway, C.5
  • 37
    • 0035086606 scopus 로고    scopus 로고
    • A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic dynamic parameterizations in weather and climate prediction models
    • doi:10.1002/qj.49712757202.
    • Palmer, T., 2001: A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic dynamic parameterizations in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279-303, doi:10.1002/qj.49712757202.
    • (2001) Quart. J. Roy. Meteor. Soc. , vol.127 , pp. 279-303
    • Palmer, T.1
  • 38
    • 0036612028 scopus 로고    scopus 로고
    • Evaluating probabilistic forecasts using information theory
    • Roulston, M., and L. Smith, 2002: Evaluating probabilistic forecasts using information theory. Mon. Wea. Rev., 130, 1653-1660.
    • (2002) Mon. Wea. Rev. , vol.130 , pp. 1653-1660
    • Roulston, M.1    Smith, L.2
  • 39
    • 79954598426 scopus 로고    scopus 로고
    • Initial-value predictability of prominent modes of North Pacific subsurface temperature in a CGCM
    • doi:10.1007/s00382-010-0749-7.
    • Teng, H., and G. Branstator, 2011: Initial-value predictability of prominent modes of North Pacific subsurface temperature in a CGCM. Climate Dyn., 36, 1813-1834, doi:10.1007/s00382-010-0749-7.
    • (2011) Climate Dyn. , vol.36 , pp. 1813-1834
    • Teng, H.1    Branstator, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.