메뉴 건너뛰기




Volumn 39, Issue 11, 2012, Pages 10202-10211

Comparison of multilabel classification models to forecast project dispute resolutions

Author keywords

Data mining; Dispute resolutions; Forecasting; Multilabel classification; Procurement management; Public private partnership

Indexed keywords

ADMINISTRATIVE APPEALS; ANALYTICAL RESULTS; AUTOMATIC INTERACTION DETECTION; CART MODELS; CHI-SQUARED; CLASSIFICATION ACCURACY; CLASSIFICATION AND REGRESSION TREE; CLASSIFICATION MODELS; COMBINED TECHNIQUES; DISPUTE RESOLUTION; ENSEMBLE MODELS; MACHINE LEARNERS; MODEL ANALYSIS; MULTI-LABEL; PROCUREMENT MANAGEMENT; PROJECT EXECUTION; PUBLIC INFRASTRUCTURE PROJECT; PUBLIC PRIVATE PARTNERSHIPS;

EID: 84859434275     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2012.02.103     Document Type: Article
Times cited : (42)

References (49)
  • 1
    • 33748632130 scopus 로고    scopus 로고
    • Good project governance for proper risk allocation in Public-private partnerships in Indonesia
    • M.P. Abednego, and S.O. Ogunlana Good project governance for proper risk allocation in Public-private partnerships in Indonesia International Journal of Project Management 24 2006 622 634
    • (2006) International Journal of Project Management , vol.24 , pp. 622-634
    • Abednego, M.P.1    Ogunlana, S.O.2
  • 4
    • 79956363043 scopus 로고    scopus 로고
    • Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition
    • R.R. Andrawis, A.F. Atiya, and H. El-Shishiny Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition International Journal of Forecasting 27 2011 672 688
    • (2011) International Journal of Forecasting , vol.27 , pp. 672-688
    • Andrawis, R.R.1    Atiya, A.F.2    El-Shishiny, H.3
  • 6
    • 26644445248 scopus 로고    scopus 로고
    • Predicting the outcome of construction litigation using boosted decision trees
    • D. Arditi, and T. Pulket Predicting the outcome of construction litigation using boosted decision trees Journal of Computing in Civil Engineering 19 2005 387 393
    • (2005) Journal of Computing in Civil Engineering , vol.19 , pp. 387-393
    • Arditi, D.1    Pulket, T.2
  • 7
    • 73349089005 scopus 로고    scopus 로고
    • Predicting the outcome of construction litigation using an integrated artificial intelligence model
    • D. Arditi, and T. Pulket Predicting the outcome of construction litigation using an integrated artificial intelligence model Journal of Computing in Civil Engineering 24 2010 73 80
    • (2010) Journal of Computing in Civil Engineering , vol.24 , pp. 73-80
    • Arditi, D.1    Pulket, T.2
  • 10
    • 0002235173 scopus 로고
    • A method of choosing mutiway partitions for classification and decision trees
    • D. Biggs, B.d. Ville, and E. Suen A method of choosing mutiway partitions for classification and decision trees Journal of Applied Statistics 18 1991 49 62
    • (1991) Journal of Applied Statistics , vol.18 , pp. 49-62
    • Biggs, D.1    Ville, B.D.2    Suen, E.3
  • 12
    • 34147105043 scopus 로고    scopus 로고
    • Application of a PSO-based neural network in analysis of outcomes of construction claims
    • K.W. Chau Application of a PSO-based neural network in analysis of outcomes of construction claims Automation in Construction 16 2007 642 646
    • (2007) Automation in Construction , vol.16 , pp. 642-646
    • Chau, K.W.1
  • 13
    • 33845633182 scopus 로고    scopus 로고
    • Forecasting systems reliability based on support vector regression with genetic algorithms
    • K.-Y. Chen Forecasting systems reliability based on support vector regression with genetic algorithms Reliability Engineering & System Safety 92 2007 423 432
    • (2007) Reliability Engineering & System Safety , vol.92 , pp. 423-432
    • Chen, K.-Y.1
  • 14
    • 41849141142 scopus 로고    scopus 로고
    • KNN based knowledge-sharing model for severe change order disputes in construction
    • J.-H. Chen KNN based knowledge-sharing model for severe change order disputes in construction Automation in Construction 17 2008 773 779
    • (2008) Automation in Construction , vol.17 , pp. 773-779
    • Chen, J.-H.1
  • 15
    • 34547795167 scopus 로고    scopus 로고
    • Hybrid ANN-CBR model for disputed change orders in construction projects
    • J.-H. Chen, and S.C. Hsu Hybrid ANN-CBR model for disputed change orders in construction projects Automation in Construction 17 2007 56 64
    • (2007) Automation in Construction , vol.17 , pp. 56-64
    • Chen, J.-H.1    Hsu, S.C.2
  • 16
    • 56349166015 scopus 로고    scopus 로고
    • Fuzzy case-based reasoning for coping with construction disputes
    • M.-Y. Cheng, H.-C. Tsai, and Y.-H. Chiu Fuzzy case-based reasoning for coping with construction disputes Expert Systems with Applications 36 2009 4106 4113
    • (2009) Expert Systems with Applications , vol.36 , pp. 4106-4113
    • Cheng, M.-Y.1    Tsai, H.-C.2    Chiu, Y.-H.3
  • 17
    • 0033150276 scopus 로고    scopus 로고
    • Critical factors affecting the use of alternative dispute resolution processes in construction
    • S.-O. Cheung Critical factors affecting the use of alternative dispute resolution processes in construction International Journal of Project Management 17 1999 189 194
    • (1999) International Journal of Project Management , vol.17 , pp. 189-194
    • Cheung, S.-O.1
  • 19
    • 79957591364 scopus 로고    scopus 로고
    • Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques
    • J.-S. Chou, C.-K. Chiu, M. Farfoura, and I. Al-Taharwa Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques Journal of Computing in Civil Engineering 25 2011 242 253
    • (2011) Journal of Computing in Civil Engineering , vol.25 , pp. 242-253
    • Chou, J.-S.1    Chiu, C.-K.2    Farfoura, M.3    Al-Taharwa, I.4
  • 20
    • 77957812826 scopus 로고    scopus 로고
    • Predicting the development cost of TFT-LCD manufacturing equipment with artificial intelligence models
    • J.-S. Chou, Y. Tai, and L.-J. Chang Predicting the development cost of TFT-LCD manufacturing equipment with artificial intelligence models International Journal of Production Economics 128 2010 339 350
    • (2010) International Journal of Production Economics , vol.128 , pp. 339-350
    • Chou, J.-S.1    Tai, Y.2    Chang, L.-J.3
  • 21
    • 33748454530 scopus 로고    scopus 로고
    • Improved PFI/PPP service outcomes through the integration of Alliance principles
    • C. Clifton, and C.F. Duffield Improved PFI/PPP service outcomes through the integration of Alliance principles International Journal of Project Management 24 2006 573 586
    • (2006) International Journal of Project Management , vol.24 , pp. 573-586
    • Clifton, C.1    Duffield, C.F.2
  • 26
    • 84859424135 scopus 로고    scopus 로고
    • IBM NY, USA: IBM Corporation
    • IBM, (2010). PASW modeler. NY, USA: IBM Corporation.
    • (2010) PASW Modeler
  • 27
    • 33745297955 scopus 로고    scopus 로고
    • Construction project dispute resolution: Options for effective dispute avoidance and management
    • D. Jones Construction project dispute resolution: Options for effective dispute avoidance and management Journal of Professional Issues in Engineering Education and Practice 132 2006 225 235
    • (2006) Journal of Professional Issues in Engineering Education and Practice , vol.132 , pp. 225-235
    • Jones, D.1
  • 29
  • 30
    • 33846816868 scopus 로고    scopus 로고
    • A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets
    • H.-J. Kim, and K.-S. Shin A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets Applied Soft Computing 7 2007 569 576
    • (2007) Applied Soft Computing , vol.7 , pp. 569-576
    • Kim, H.-J.1    Shin, K.-S.2
  • 31
    • 67349231310 scopus 로고    scopus 로고
    • Using support vector machine with a hybrid feature selection method to the stock trend prediction
    • M.-C. Lee Using support vector machine with a hybrid feature selection method to the stock trend prediction Expert Systems with Applications 36 2009 10896 10904
    • (2009) Expert Systems with Applications , vol.36 , pp. 10896-10904
    • Lee, M.-C.1
  • 32
    • 20844445085 scopus 로고    scopus 로고
    • A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset
    • L. Li, W. Jiang, X. Li, K.L. Moser, Z. Guo, and L. Du A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset Genomics 85 2005 16 23
    • (2005) Genomics , vol.85 , pp. 16-23
    • Li, L.1    Jiang, W.2    Li, X.3    Moser, K.L.4    Guo, Z.5    Du, L.6
  • 33
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • W.-Y. Loh, and Y.-S. Shih Split selection methods for classification trees Statistica Sinica 7 1997 815 840
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 34
    • 33744925661 scopus 로고    scopus 로고
    • Hybrid genetic algorithms and Support Vector Machines for bankruptcy prediction
    • S.-H. Min, J. Lee, and I. Han Hybrid genetic algorithms and Support Vector Machines for bankruptcy prediction Expert Systems with Applications 31 2006 652 660
    • (2006) Expert Systems with Applications , vol.31 , pp. 652-660
    • Min, S.-H.1    Lee, J.2    Han, I.3
  • 35
    • 0442312364 scopus 로고    scopus 로고
    • Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: Study of benzene isopropylation on Hbeta catalyst
    • S. Nandi, Y. Badhe, J. Lonari, U. Sridevi, B.S. Rao, and S.S. Tambe Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: Study of benzene isopropylation on Hbeta catalyst Chemical Engineering Journal 97 2004 115 129
    • (2004) Chemical Engineering Journal , vol.97 , pp. 115-129
    • Nandi, S.1    Badhe, Y.2    Lonari, J.3    Sridevi, U.4    Rao, B.S.5    Tambe, S.S.6
  • 38
    • 84859428951 scopus 로고    scopus 로고
    • PCC Taipei, Taiwan (ROC): Public Construction Commission, Executive Yuan
    • PCC, (2011). Engineering evaluation forum of PPP strategy (in Chinese). In (Vol. 2011). Taipei, Taiwan (ROC): Public Construction Commission, Executive Yuan.
    • (2011) Engineering Evaluation Forum of PPP Strategy (In Chinese) , vol.2011
  • 42
    • 77951137078 scopus 로고    scopus 로고
    • SPSS Chicago, USA: Integral Solutions Limited
    • SPSS, (2007). Clementine 12.0 algorithms guide. Chicago, USA: Integral Solutions Limited.
    • (2007) Clementine 12.0 Algorithms Guide
  • 45
    • 84859424134 scopus 로고    scopus 로고
    • The World Bank Group (WBG)
    • The World Bank Group (WBG). (2011). .
    • (2011)
  • 46
    • 79956370913 scopus 로고    scopus 로고
    • Forecasting the NN5 time series with hybrid models
    • J.D. Wichard Forecasting the NN5 time series with hybrid models International Journal of Forecasting 27 2011 700 707
    • (2011) International Journal of Forecasting , vol.27 , pp. 700-707
    • Wichard, J.D.1
  • 48
    • 71749102382 scopus 로고    scopus 로고
    • The hybrid forecasting model based on chaotic mapping, genetic algorithm and support vector machine
    • Q. Wu The hybrid forecasting model based on chaotic mapping, genetic algorithm and support vector machine Expert Systems with Applications 37 2010 1776 1783
    • (2010) Expert Systems with Applications , vol.37 , pp. 1776-1783
    • Wu, Q.1
  • 49
    • 58349084263 scopus 로고    scopus 로고
    • A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
    • C.-H. Wu, G.-H. Tzeng, and R.-H. Lin A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression Expert Systems with Applications 36 2009 4725 4735
    • (2009) Expert Systems with Applications , vol.36 , pp. 4725-4735
    • Wu, C.-H.1    Tzeng, G.-H.2    Lin, R.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.