메뉴 건너뛰기




Volumn 12, Issue 7, 2011, Pages 1048-1056

Automatic tissue classification in multispectral MRIs via an unsupervised model

Author keywords

Improved Genetic Algorithm; Magnetic Resonance Image; Markov Random Field Model; Stochastic Relaxation

Indexed keywords


EID: 84859420087     PISSN: 18184952     EISSN: 19916426     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (34)
  • 2
    • 0033402718 scopus 로고    scopus 로고
    • Intensity Modulated Radiation Therapy (IMRT): A new promising technology in radiation oncology
    • The, B.S., S.Y. Woo and E.B. Butler, 1999. Intensity Modulated Radiation Therapy (IMRT): A new promising technology in radiation oncology. Oncologist, 4(6): 433-442.
    • (1999) Oncologist , vol.4 , Issue.6 , pp. 433-442
    • The, B.S.1    Woo, S.Y.2    Butler, E.B.3
  • 3
    • 0035069693 scopus 로고    scopus 로고
    • Three-dimensional conformal radiation treatment planning and delivery for low-and intermediate-grade gliomas
    • Morris, D.E., J.D. Bourland, J.G. Rosenman and E.G. Shaw, 2001. Three-dimensional conformal radiation treatment planning and delivery for low-and intermediate-grade gliomas. Semin Radiat Oncol. 11: 124-137.
    • (2001) Semin Radiat Oncol. , vol.11 , pp. 124-137
    • Morris, D.E.1    Bourland, J.D.2    Rosenman, J.G.3    Shaw, E.G.4
  • 4
    • 0024787435 scopus 로고
    • Radiation therapy treatment planning in supratentorial glioblastoma multiforme: An analysis based on post mortem topographic anatomy with CT correlations
    • Halperin, E.C., G. Bentel, E.R. Heinz and P.C. Burger, 1989. Radiation therapy treatment planning in supratentorial glioblastoma multiforme: an analysis based on post mortem topographic anatomy with CT correlations. Int. J. Radiat Oncol Biol Phys., 17, 1347-1350.
    • (1989) Int. J. Radiat Oncol Biol Phys. , vol.17 , pp. 1347-1350
    • Halperin, E.C.1    Bentel, G.2    Heinz, E.R.3    Burger, P.C.4
  • 5
    • 0029113588 scopus 로고
    • Results of irradiation in patients with high-grade gliomas evaluated by magnetic resonance imaging
    • Seither, R.B., B. Jose, K.J. Paris, R.D. Lindberg and W.J. Spanos, 1995. Results of irradiation in patients with high-grade gliomas evaluated by magnetic resonance imaging. Am. J. Clin. Oncol., 18: 297-299.
    • (1995) Am. J. Clin. Oncol. , vol.18 , pp. 297-299
    • Seither, R.B.1    Jose, B.2    Paris, K.J.3    Lindberg, R.D.4    Spanos, W.J.5
  • 7
    • 0033874010 scopus 로고    scopus 로고
    • Unsupervised image segmentation using Markov random field models
    • Barker, S.A. and P.J.W. Rayner, 2000. Unsupervised image segmentation using Markov random field models. Pattern Recogn, 33: 587-602.
    • (2000) Pattern Recogn , vol.33 , pp. 587-602
    • Barker, S.A.1    Rayner, P.J.W.2
  • 8
    • 11844291330 scopus 로고    scopus 로고
    • Evolutionary optimization in markov random field modeling
    • Wang, X. and H. Wang, 2003. Evolutionary optimization in markov random field modeling. Evolutionary Computation, IEEE Transactions On, 8(6): 567-579.
    • (2003) Evolutionary Computation, IEEE Transactions On , vol.8 , Issue.6 , pp. 567-579
    • Wang, X.1    Wang, H.2
  • 9
    • 0029308048 scopus 로고
    • Unsupervised texture segmentation using multichannel decomposition and hidden Markov models
    • Chen, J.L. and A. Kundu, 1995. Unsupervised texture segmentation using multichannel decomposition and hidden Markov models. IEEE Trans. Image Process. 4(5): 603-619.
    • (1995) IEEE Trans. Image Process. , vol.4 , Issue.5 , pp. 603-619
    • Chen, J.L.1    Kundu, A.2
  • 11
    • 0027635418 scopus 로고
    • Mean field approximation using compound gauss-markov random field foredge detection and image estimation
    • Zerubia, J. and R. Chellappa, 1993. Mean field approximation using compound gauss-markov random field foredge detection and image estimation. IEEE Trans. Neural Networks, 8: 703-709.
    • (1993) IEEE Trans. Neural Networks , vol.8 , pp. 703-709
    • Zerubia, J.1    Chellappa, R.2
  • 13
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm, IEEE Trans Med
    • Zhang, Y., M. Brady and S. Smith, 2001. Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm, IEEE Trans Med. Imag., 20: 45-57.
    • (2001) Imag. , vol.20 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 14
    • 26444479778 scopus 로고
    • Optimisation by simulated annealing
    • Kirkpatrick, S., C. Gellatt and M. Vecchi, 1983. Optimisation by simulated annealing. Sci., 220: 671-690.
    • (1983) Sci. , vol.220 , pp. 671-690
    • Kirkpatrick, S.1    Gellatt, C.2    Vecchi, M.3
  • 16
    • 0034321706 scopus 로고    scopus 로고
    • A genetic algorithm-based segmentation of markov random field modeled images
    • Kim, E.Y., S.H. Park and H.J. Kim, 2000. A genetic algorithm-based segmentation of markov random field modeled images. IEEE Trans. Signal Processing Lett., 7(11): 301-304.
    • (2000) IEEE Trans. Signal Processing Lett. , vol.7 , Issue.11 , pp. 301-304
    • Kim, E.Y.1    Park, S.H.2    Kim, H.J.3
  • 19
    • 10944228647 scopus 로고    scopus 로고
    • Feature extraction CNN algorithms for artificial immune systems
    • Cserey, G.Y., A. Falus and W. Porod, 2004. Feature extraction CNN algorithms for artificial immune systems. J. IEEE, pp: 147-152.
    • (2004) J. IEEE , pp. 147-152
    • Cserey, G.Y.1    Falus, A.2    Porod, W.3
  • 20
    • 0036668835 scopus 로고    scopus 로고
    • Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming
    • Pitiot, A., A.W. Toga and P.M. Thompson, 2002. Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming. J. IEEE Trans. Med. Imaging, 21(8): 910-924.
    • (2002) J. IEEE Trans. Med. Imaging , vol.21 , Issue.8 , pp. 910-924
    • Pitiot, A.1    Toga, A.W.2    Thompson, P.M.3
  • 23
    • 0028203106 scopus 로고
    • Convergence analysis of canonical genetic algorithms
    • Rudolph, G., 1995. Convergence analysis of canonical genetic algorithms, IEEE Trans. on Neural Networks, 5: 96-101.
    • (1995) IEEE Trans. on Neural Networks , vol.5 , pp. 96-101
    • Rudolph, G.1
  • 25
    • 0028667908 scopus 로고
    • A systematic way for region-based image segmentation based on Markov random field model, Pattern Recognit
    • Kim, I.Y. and H.S. Yang, 1994. A systematic way for region-based image segmentation based on Markov random field model, Pattern Recognit. Lett., 15: 969-976.
    • (1994) Lett. , vol.15 , pp. 969-976
    • Kim, I.Y.1    Yang, H.S.2
  • 26
    • 0029732348 scopus 로고    scopus 로고
    • An integration scheme for image segmentation and labeling based on Markov random field model, IEEE Trans
    • Kim, I.Y. and H.S. Yang, 1996. An integration scheme for image segmentation and labeling based on Markov random field model, IEEE Trans. Pattern Anal. Mach. Intell., 18(1): 69-73.
    • (1996) Pattern Anal. Mach. Intell. , vol.18 , Issue.1 , pp. 69-73
    • Kim, I.Y.1    Yang, H.S.2
  • 27
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distribution and the Bayesian restoration of images
    • Geman, S. and D. Geman, 1984. Stochastic relaxation, gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6): 721-741.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 28
    • 0023123263 scopus 로고
    • Modeling and segmentation of noisy and textured images using Gibbs random fields, IEEE Trans
    • Derin, H. and H. Elliott, 1987. Modeling and segmentation of noisy and textured images using Gibbs random fields, IEEE Trans. Pattern Anal. Mach. Intell, 9(1): 39-55.
    • (1987) Pattern Anal. Mach. Intell , vol.9 , Issue.1 , pp. 39-55
    • Derin, H.1    Elliott, H.2
  • 29
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • Besag, J., 1974. Spatial interaction and the statistical analysis of lattice systems. RoyalStat B-36 (N2), 192-236.
    • (1974) RoyalStat B-36 (N2) , pp. 192-236
    • Besag, J.1
  • 31
    • 70449922668 scopus 로고    scopus 로고
    • Improved crossover and mutation operators for genetic-algorithm project scheduling
    • CEC '09. IEEE Congress
    • Abido, M.A. and A. Elazouni, 2009. Improved crossover and mutation operators for genetic-algorithm project scheduling, Evolutionary Computation. CEC '09. IEEE Congress, pp: 1865-1872.
    • (2009) Evolutionary Computation , pp. 1865-1872
    • Abido, M.A.1    Elazouni, A.2
  • 32
    • 0036828879 scopus 로고    scopus 로고
    • Fast Robust Automated Brain Extraction
    • Smith, M.S., 2002. Fast Robust Automated Brain Extraction. Human Brain Mapping. 17: 143-155.
    • (2002) Human Brain Mapping. , vol.17 , pp. 143-155
    • Smith, M.S.1
  • 33
    • 0000250265 scopus 로고
    • Measures of the amount of ecologic association between species
    • Dice, L., 1945. Measures of the amount of ecologic association between species. Ecol., 26: 297-302.
    • (1945) Ecol. , vol.26 , pp. 297-302
    • Dice, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.