메뉴 건너뛰기




Volumn 7, Issue 4, 2012, Pages 341-352

Decision tree models for data mining in hit discovery

Author keywords

decision tree; DTI; QSAR; rule based systems

Indexed keywords

CYTOCHROME P450; CYTOCHROME P450 1A2; CYTOCHROME P450 INHIBITOR; GLYCOPROTEIN P; NONNUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITOR;

EID: 84859338757     PISSN: 17460441     EISSN: 1746045X     Source Type: Journal    
DOI: 10.1517/17460441.2012.668182     Document Type: Review
Times cited : (20)

References (62)
  • 1
    • 9444289262 scopus 로고    scopus 로고
    • An introduction to decision tree modeling
    • Fundamental and technical introduction to DTI, along with biomedical examples
    • Myles AJ, Feudale RN, Liu Y, et al. An introduction to decision tree modeling. J Chemometr 2004;18:275-85 Fundamental and technical introduction to DTI, along with biomedical examples.
    • (2004) J Chemometr , vol.18 , pp. 275-285
    • Myles, A.J.1    Feudale, R.N.2    Liu, Y.3
  • 2
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Vapnik V, Chapelle O. Bounds on error expectation for support vector machines. Neural Comput 2000;12:2013-36
    • (2000) Neural Comput , vol.12 , pp. 2013-2036
    • Vapnik, V.1    Chapelle, O.2
  • 3
    • 84991833843 scopus 로고    scopus 로고
    • 3rd edition. Morgan Kaufmann; San Francisco: Plain language introduction to data mining techniques and tutorial for the open Weka software package
    • Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques. 3rd edition. Morgan Kaufmann; San Francisco: 2011 Plain language introduction to data mining techniques and tutorial for the open Weka software package.
    • (2011) Data Mining: Practical Machine Learning Tools and Techniques
    • Witten, I.H.1    Frank, E.2
  • 5
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan JR. Induction of decision trees. Mach Learn 1986;1:81-106
    • (1986) Mach Learn , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 6
    • 0003500248 scopus 로고
    • Morgan Kaufmann, San Mateo, CA; Very readable description of the original C4.5 software along with historical context and source code
    • Quinlan JR. C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA; 1993. Very readable description of the original C4.5 software along with historical context and source code.
    • (1993) C4.5 Programs for Machine Learning
    • Quinlan, J.R.1
  • 7
    • 20444399504 scopus 로고    scopus 로고
    • Boosting: An ensemble learning tool for compound classification and QSAR modeling
    • DOI 10.1021/ci0500379
    • Svetnik V, Wang T, Tong C, et al. Boosting: an ensemble learning tool for compound classification and QSAR modeling. J Chem Inf Model 2005;45:786-99 Enhancing data exploitation with boosting, demonstrated using different chemical datasets and with regression trees. (Pubitemid 40795182)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.3 , pp. 786-799
    • Svetnik, V.1    Wang, T.2    Tong, C.3    Liaw, A.4    Sheridan, R.P.5    Song, Q.6
  • 8
    • 0000661829 scopus 로고
    • An Exploratory technique for investigating large quantities of categorical data
    • Kass GV. An Exploratory technique for investigating large quantities of categorical data. Appl Stat 1980;29:119-27
    • (1980) Appl Stat , vol.29 , pp. 119-127
    • Kass, G.V.1
  • 11
    • 0006178946 scopus 로고
    • Problems in the analysis of survey data, and a proposal
    • Morgan JN, Sonquist JA. Problems in the analysis of survey data, and a proposal. J Am Stat Assoc 1963;58:415-34
    • (1963) J Am Stat Assoc , vol.58 , pp. 415-434
    • Morgan, J.N.1    Sonquist, J.A.2
  • 12
    • 0003802343 scopus 로고
    • Chapman & Hall, Boca Raton, FL; Seminal work on a DTI algorithm that has become a workhorse in medical decision making
    • Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression Trees. Chapman & Hall, Boca Raton, FL; 1984 Seminal work on a DTI algorithm that has become a workhorse in medical decision making.
    • (1984) Classification and Regression Trees
    • Breiman, L.1    Friedman, J.2    Stone, C.J.3    Olshen, R.A.4
  • 13
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classifcation trees
    • Loh W-Y, Shih Y-S. Split selection methods for classifcation trees. Statist Sinica 1997;7:815-40
    • (1997) Statist Sinica , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 14
    • 0027580356 scopus 로고
    • Very Simple classification rules perform well on most commonly used datasets
    • Description of one-rule algorithms and reasonings as to their surprising efficiency
    • Holte RC. Very Simple classification rules perform well on most commonly used datasets. Mach Learn 1993;11:63-90 Description of one-rule algorithms and reasonings as to their surprising efficiency.
    • (1993) Mach Learn , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman L. Random forests. Mach Learn 2001;45:5-32 Technical account of a frequently used meta-classifier with insightful comments on boosting DTI performance. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 16
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and QSAR modeling
    • Practical implementation of Random Forests in cheminformatics
    • Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 2003;43:1947-58 Practical implementation of Random Forests in cheminformatics.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3
  • 17
    • 69549090097 scopus 로고    scopus 로고
    • A model-based ensembling approach for developing QSARs
    • Using ensemble predictors for imbalanced/skewed datasets
    • Zhang QY, Hughes-Oliver JM, Ng RT. A model-based ensembling approach for developing QSARs. J Chem Inf Model 2009;49:1857-65 Using ensemble predictors for imbalanced/skewed datasets.
    • (2009) J Chem Inf Model , vol.49 , pp. 1857-1865
    • Zhang, Q.Y.1    Hughes-Oliver, J.M.2    Ng, R.T.3
  • 18
    • 77955921855 scopus 로고    scopus 로고
    • Automatic feature subset selection for decision tree-based ensemble methods in the prediction of bioactivity
    • DTI learning with integrated feature selection
    • Cao DS, Xu QS, Liang YZ, et al. Automatic feature subset selection for decision tree-based ensemble methods in the prediction of bioactivity. Chemom Intell Lab Syst 2010;103:129-36 DTI learning with integrated feature selection.
    • (2010) Chemom Intell Lab Syst , vol.103 , pp. 129-136
    • Cao, D.S.1    Xu, Q.S.2    Liang, Y.Z.3
  • 19
    • 80054053316 scopus 로고    scopus 로고
    • Selecting relevant descriptors for classification by bayesian estimates: A comparison with decision trees and support vector machines approaches for disparate data sets
    • Carbon-Mangels M, Hutter MC. Selecting relevant descriptors for classification by bayesian estimates: a comparison with decision trees and support vector machines approaches for disparate data sets. Mol Inform 2011;30:885-95
    • (2011) Mol Inform , vol.30 , pp. 885-895
    • Carbon-Mangels, M.1    Hutter, M.C.2
  • 20
    • 1542426098 scopus 로고    scopus 로고
    • 2D QSAR consensus prediction for high-throughput virtual screening. An application to COX-2 inhibition modeling and screening of the NCI database
    • Baurin N, Mozziconacci JC, Arnoult E, et al. 2D QSAR consensus prediction for high-throughput virtual screening. An application to COX-2 inhibition modeling and screening of the NCI database. J Chem Inf Comput Sci 2004;44:276-85
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 276-285
    • Baurin, N.1    Mozziconacci, J.C.2    Arnoult, E.3
  • 21
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • DOI 10.1007/BF00337288
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern 1982;43:59-69 (Pubitemid 12139984)
    • (1982) Biological Cybernetics , vol.43 , Issue.1 , pp. 59-69
    • Kohonen, T.1
  • 22
    • 54949110209 scopus 로고    scopus 로고
    • Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem
    • Han L, Wang Y, Bryant SH. Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem. BMC Bioinformatics 2008;9:401
    • (2008) BMC Bioinformatics , vol.9 , pp. 401
    • Han, L.1    Wang, Y.2    Bryant, S.H.3
  • 23
    • 31044449354 scopus 로고    scopus 로고
    • The development of 3D-QSAR study and recursive partitioning of heterocyclic quinone derivatives with antifungal activity
    • DOI 10.1016/j.bmc.2005.10.010, PII S0968089605009776
    • Choi SY, Shin JH, Ryu CK, et al. The development of 3D-QSAR study and recursive partitioning of heterocyclic quinone derivatives with antifungal activity. Bioorg Med Chem 2006;14:1608-17 (Pubitemid 43120296)
    • (2006) Bioorganic and Medicinal Chemistry , vol.14 , Issue.5 , pp. 1608-1617
    • Choi, S.-Y.1    Shin, J.H.2    Ryu, C.K.3    Nam, K.-Y.4    No, K.T.5    Park, C.H.-Y.6
  • 24
    • 11144355186 scopus 로고    scopus 로고
    • Classification and regression trees-studies of HIV reverse transcriptase inhibitors
    • Daszykowski M, Walczak B, Xu QS, et al. Classification and regression trees-studies of HIV reverse transcriptase inhibitors. J Chem Inf Comput Sci 2004;44:716-26
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 716-726
    • Daszykowski, M.1    Walczak, B.2    Xu, Q.S.3
  • 25
    • 66449094983 scopus 로고    scopus 로고
    • Prediction of antibacterial compounds by machine learning approaches
    • Yang XG, Chen D, Wang M, et al. Prediction of antibacterial compounds by machine learning approaches. J Comput Chem 2009;30:1202-11
    • (2009) J Comput Chem , vol.30 , pp. 1202-1211
    • Yang, X.G.1    Chen, D.2    Wang, M.3
  • 26
    • 77954068708 scopus 로고    scopus 로고
    • Estimation of ADME properties with substructure pattern recognition
    • Shen J, Cheng F, Xu Y, et al. Estimation of ADME properties with substructure pattern recognition. J Chem Inform Model 2010;50:1034-41
    • (2010) J Chem Inform Model , vol.50 , pp. 1034-1041
    • Shen, J.1    Cheng, F.2    Xu, Y.3
  • 27
    • 10044296378 scopus 로고    scopus 로고
    • Use of classification regression tree in predicting oral absorption in humans
    • Bai JP, Utis A, Crippen G, et al. Use of classification regression tree in predicting oral absorption in humans. J Chem Inf Comput Sci 2004;44:2061-9
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 2061-2069
    • Bai, J.P.1    Utis, A.2    Crippen, G.3
  • 29
    • 77954075802 scopus 로고    scopus 로고
    • Gaussian processes for classification: QSAR modeling of ADMET and target activity
    • Obrezanova O, Segall MD. Gaussian processes for classification: QSAR modeling of ADMET and target activity. J Chem Inf Model 2010;50:1053-61
    • (2010) J Chem Inf Model , vol.50 , pp. 1053-1061
    • Obrezanova, O.1    Segall, M.D.2
  • 30
    • 79952932817 scopus 로고    scopus 로고
    • Combinatorial modeling of human intestinal absorption
    • Suenderhauf C, Hammann F, Maunz A, et al. Combinatorial modeling of human intestinal absorption. Mol Pharm 2011;8:213-2431.
    • (2011) Mol Pharm , vol.8 , pp. 213-2431
    • Suenderhauf, C.1    Hammann, F.2    Maunz, A.3
  • 31
    • 6944221357 scopus 로고    scopus 로고
    • Drug-drug interactions for UDP-glucuronosyltransferase substrates: A pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios
    • Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 2004;32:1201-8
    • (2004) Drug Metab Dispos , vol.32 , pp. 1201-1208
    • Williams, J.A.1    Hyland, R.2    Jones, B.C.3
  • 32
    • 79960245348 scopus 로고    scopus 로고
    • Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers
    • Cheng F, Yu Y, Shen J, et al. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. J Chem Inf Model 2011;51:996-1011
    • (2011) J Chem Inf Model , vol.51 , pp. 996-1011
    • Cheng, F.1    Yu, Y.2    Shen, J.3
  • 33
    • 61449101715 scopus 로고    scopus 로고
    • Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques
    • Vasanthanathan P, Taboureau O, Oostenbrink C, et al. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metab Dispos 2009;37:658-64
    • (2009) Drug Metab Dispos , vol.37 , pp. 658-664
    • Vasanthanathan, P.1    Taboureau, O.2    Oostenbrink, C.3
  • 34
    • 71949083397 scopus 로고    scopus 로고
    • Classification of cytochrome p(450) activities using machine learning methods
    • Hammann F, Gutmann H, Baumann U, et al. Classification of cytochrome p(450) activities using machine learning methods. Mol Pharm 2009;6:1920-6
    • (2009) Mol Pharm , vol.6 , pp. 1920-1926
    • Hammann, F.1    Gutmann, H.2    Baumann, U.3
  • 35
    • 0041698413 scopus 로고    scopus 로고
    • Use of robust classification techniques for the prediction of human cytochrome P450 6 inhibition
    • Susnow RG, Dixon SL. Use of robust classification techniques for the prediction of human cytochrome P450 6 inhibition. J Chem Inf Comput Sci 2003;43:1308-15
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1308-1315
    • Susnow, R.G.1    Dixon, S.L.2
  • 36
    • 18144369259 scopus 로고    scopus 로고
    • Development of CYP3A4 inhibition models: Comparisons of machine-learning techniques and molecular descriptors
    • DOI 10.1177/1087057104274091
    • Arimoto R, Prasad MA, Gifford EM. Development of CYP3A4 inhibition models: comparisons of machine-learning techniques and molecular descriptors. J Biomol Screen 2005;10:197-205 (Pubitemid 40617157)
    • (2005) Journal of Biomolecular Screening , vol.10 , Issue.3 , pp. 197-205
    • Arimoto, R.1    Prasad, M.-A.2    Gifford, E.M.3
  • 38
    • 68349131384 scopus 로고    scopus 로고
    • Development of decision tree models for substrates, inhibitors, and inducers of p-glycoprotein
    • Hammann F, Gutmann H, Jecklin U, et al. Development of decision tree models for substrates, inhibitors, and inducers of p-glycoprotein. Curr Drug Metab 2009;10:339-46
    • (2009) Curr Drug Metab , vol.10 , pp. 339-346
    • Hammann, F.1    Gutmann, H.2    Jecklin, U.3
  • 39
    • 33646250193 scopus 로고    scopus 로고
    • CNS permeability of drugs predicted by a decision tree
    • Andres C, Hutter MC. CNS permeability of drugs predicted by a decision tree. Qsar Comb Sci 2006;25:305-9
    • (2006) Qsar Comb Sci , vol.25 , pp. 305-309
    • Andres, C.1    Hutter, M.C.2
  • 40
    • 78049385182 scopus 로고    scopus 로고
    • Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties
    • Gupta RR, Gifford EM, Liston T, et al. Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties. Drug Metab Dispos 2010;38:2083-90
    • (2010) Drug Metab Dispos , vol.38 , pp. 2083-2090
    • Gupta, R.R.1    Gifford, E.M.2    Liston, T.3
  • 41
    • 0037361967 scopus 로고    scopus 로고
    • The chemistry development kit (CDK): An open-source Java library for chemo- and bioinformatics
    • Description of the popular open-source package for deriving physicochemical descriptors
    • Steinbeck C, Han Y, Kuhn S, et al. The chemistry development kit (CDK): an open-source Java library for chemo- and bioinformatics. J Chem Inf Comput Sci 2003;43:493-500 Description of the popular open-source package for deriving physicochemical descriptors.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 493-500
    • Steinbeck, C.1    Han, Y.2    Kuhn, S.3
  • 42
    • 77949366888 scopus 로고    scopus 로고
    • Integrated in silico-in vitro strategy for addressing cytochrome P4503A4 time-dependent inhibition
    • Zientek M, Stoner C, Ayscue R, et al. Integrated in silico-in vitro strategy for addressing cytochrome P4503A4 time-dependent inhibition. Chem Res Toxicol 2010;23:664-76
    • (2010) Chem Res Toxicol , vol.23 , pp. 664-676
    • Zientek, M.1    Stoner, C.2    Ayscue, R.3
  • 43
    • 77953811317 scopus 로고    scopus 로고
    • Prediction of adverse drug reactions using decision tree modeling
    • Hammann F, Gutmann H, Vogt N, et al. Prediction of adverse drug reactions using decision tree modeling. Clin Pharmacol Ther 2010;88:52-9
    • (2010) Clin Pharmacol Ther , vol.88 , pp. 52-59
    • Hammann, F.1    Gutmann, H.2    Vogt, N.3
  • 44
    • 79954628072 scopus 로고    scopus 로고
    • In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint
    • Structure-based predictions of maximum recommended daily doses (MRDD) using an RF variant
    • Cao DS, Hu QN, Xu QS, et al. In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint. Anal Chim Acta 2011;692:50-6 Structure-based predictions of maximum recommended daily doses (MRDD) using an RF variant.
    • (2011) Anal Chim Acta , vol.692 , pp. 50-56
    • Cao, D.S.1    Hu, Q.N.2    Xu, Q.S.3
  • 45
    • 79960573670 scopus 로고    scopus 로고
    • Predicting the thermal stability of nitroaromatic compounds using chemoinformatic tools
    • Fayet G, Del Rio A, Rotureau P, et al. Predicting the thermal stability of nitroaromatic compounds using chemoinformatic tools. Mol Inform 2011;30:623-34
    • (2011) Mol Inform , vol.30 , pp. 623-634
    • Fayet, G.1    Del Rio, A.2    Rotureau, P.3
  • 48
    • 0037230506 scopus 로고    scopus 로고
    • An overall strategy for the testing of chemicals for human hazard and risk assessment under the EU REACH system
    • Combes R, Barratt M, Balls M. An overall strategy for the testing of chemicals for human hazard and risk assessment under the EU REACH system. Altern Lab Anim 2003;31:7-19 (Pubitemid 36343106)
    • (2003) ATLA Alternatives to Laboratory Animals , vol.31 , Issue.1 , pp. 7-19
    • Combes, R.1    Barratt, M.2    Balls, M.3
  • 50
    • 77951463627 scopus 로고    scopus 로고
    • Non-animal sensitization testing: State-of-the-art
    • Vandebriel RJ, van Loveren H. Non-animal sensitization testing: state-of-the-art. Crit Rev Toxicol 2010;40:389-404
    • (2010) Crit Rev Toxicol , vol.40 , pp. 389-404
    • Vandebriel, R.J.1    Van Loveren, H.2
  • 52
    • 0018079206 scopus 로고
    • Estimation of toxic hazard - A decision tree approach
    • DOI 10.1016/S0015-6264(76)80522-6
    • Cramer GM, Ford RA, Hall RL. Estimation of toxic hazard-a decision tree approach. Food Cosmet Toxicol 1978;16:255-76 (Pubitemid 9010193)
    • (1978) Food and Cosmetics Toxicology , vol.16 , Issue.3 , pp. 255-276
    • Cramer, G.M.1    Ford, R.A.2    Hall, R.L.3
  • 53
    • 0029974283 scopus 로고    scopus 로고
    • Thresholds of toxicological concern based on structure-activity relationships
    • Munro IC, Ford RA, Kennepohl E, et al. Thresholds of toxicological concern based on structure-activity relationships. Drug Metab Rev 1996;28:209-17 (Pubitemid 26178332)
    • (1996) Drug Metabolism Reviews , vol.28 , Issue.1-2 , pp. 209-217
    • Munro, I.C.1    Ford, R.A.2    Kennepohl, E.3    Sprenger, J.G.4
  • 55
    • 2442548465 scopus 로고    scopus 로고
    • Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules
    • DOI 10.1002/em.20013
    • Snyder RD, Pearl GS, Mandakas G, et al. Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules. Environ Mol Mutagen 2004;43:143-58 (Pubitemid 38649730)
    • (2004) Environmental and Molecular Mutagenesis , vol.43 , Issue.3 , pp. 143-158
    • Snyder, R.D.1    Pearl, G.S.2    Mandakas, G.3    Choy, W.N.4    Goodsaid, F.5    Rosenblum, I.Y.6
  • 57
    • 0345737137 scopus 로고    scopus 로고
    • Predicting the Genotoxicity of Polycyclic Aromatic Compounds from Molecular Structure with Different Classifiers
    • DOI 10.1021/tx030032a
    • He L, Jurs PC, Custer LL, et al. Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers. Chem Res Toxicol 2003;16:1567-80 (Pubitemid 38049376)
    • (2003) Chemical Research in Toxicology , vol.16 , Issue.12 , pp. 1567-1580
    • He, L.1    Jurs, P.C.2    Custer, L.L.3    Durham, S.K.4    Pearl, G.M.5
  • 58
    • 0037835567 scopus 로고    scopus 로고
    • Predicting the genotoxicity of secondary and aromatic amines using data subsetting to generate a model ensemble
    • Mattioni BE, Kauffman GW, Jurs PC, et al. Predicting the genotoxicity of secondary and aromatic amines using data subsetting to generate a model ensemble. J Chem Inf Comput Sci 2003;43:949-63
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 949-963
    • Mattioni, B.E.1    Kauffman, G.W.2    Jurs, P.C.3
  • 59
    • 0034221206 scopus 로고    scopus 로고
    • Symbolic, neural, and Bayesian machine learning models for predicting carcinogenicity of chemical compounds
    • Bahler D, Stone B, Wellington C, et al. Symbolic, neural, and Bayesian machine learning models for predicting carcinogenicity of chemical compounds. J Chem Inf Comput Sci 2000;40:906-14
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 906-914
    • Bahler, D.1    Stone, B.2    Wellington, C.3
  • 60
    • 57349166641 scopus 로고    scopus 로고
    • Binary classification models for endocrine disrupter effects mediated through the estrogen receptor
    • Roncaglioni A, Piclin N, Pintore M, et al. Binary classification models for endocrine disrupter effects mediated through the estrogen receptor.SAR QSAR Environ Res 2008;19:697-733
    • (2008) SAR QSAR Environ Res , vol.19 , pp. 697-733
    • Roncaglioni, A.1    Piclin, N.2    Pintore, M.3
  • 61
    • 0037190138 scopus 로고    scopus 로고
    • Molecular descriptor selection combining genetic algorithms and fuzzy logic: Application to database mining procedures
    • DOI 10.1016/S0169-7439(02)00033-3, PII S0169743902000333
    • Ros F, Pintore M, Chretien JR. Molecular description selection combining genetic algorithms and fuzzy logic: application to database mining procedures. Chemometr Intell Lab Syst 2002;63:15-26 (Pubitemid 34828212)
    • (2002) Chemometrics and Intelligent Laboratory Systems , vol.63 , Issue.1 , pp. 15-26
    • Ros, F.1    Pintore, M.2    Chretien, J.R.3
  • 62
    • 0037365123 scopus 로고    scopus 로고
    • Decision forest: Combining the predictions of multiple independent decision tree models
    • Combining similarly performing trees into an ensemble predictor
    • Tong WD, Hong HX, Fang H, et al. Decision forest: combining the predictions of multiple independent decision tree models. J Chem Inf Comput Sci 2003;43:525-31 Combining similarly performing trees into an ensemble predictor.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 525-531
    • Tong, W.D.1    Hong, H.X.2    Fang, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.