메뉴 건너뛰기




Volumn 33, Issue 9, 2012, Pages 1075-1082

Online multiple instance gradient feature selection for robust visual tracking

Author keywords

Gradient based feature selection; HOG; Multiple Instance Learning; Online object tracking

Indexed keywords

ADAPTIVE APPEARANCE MODELS; APPEARANCE MODELS; BINARY CLASSIFICATION PROBLEMS; DISCRIMINATIVE FEATURES; GRADIENT BASED; HOG; MULTIPLE INSTANCE LEARNING; MULTIPLE INSTANCES; OBJECT TRACKING; OPTIMIZATION SCHEME; ROBUST TRACKING; SELECTION MECHANISM; TRACKING TECHNIQUES; UNIFIED FRAMEWORK; VIDEO SEQUENCES; VISUAL TRACKING;

EID: 84859309044     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2012.01.020     Document Type: Article
Times cited : (17)

References (30)
  • 2
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple features. In: Proc. Computer Vision and Pattern Recognition, pp. 511-518.
    • (2001) Proc. Computer Vision and Pattern Recognition , pp. 511-518
    • Viola, P.1    Jones, M.2
  • 14
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • PII S0004370296000343
    • T.G. Dietterich, R.H. Lathrop, and L.T. Perez Solving the multiple instance problem with axis parallel rectangle Artif. Intell. 1997 31 71 (Pubitemid 127412230)
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 18
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • DOI 10.1007/s11263-007-0075-7, Special issue on Machine Learning for Vision, Guest Editors: William Freeman, Pietro Perona and Bernhard Scholkopf
    • D. Ross, J. Lim, R.S. Lin, and M.H. Yang Incremental learning for robust visual tracking Int. J. Comput. Vis. 2008 125 141 (Pubitemid 351294740)
    • (2008) International Journal of Computer Vision , vol.77 , Issue.1-3 , pp. 125-141
    • Ross, D.A.1    Lim, J.2    Lin, R.-S.3    Yang, M.-H.4
  • 19
    • 84859918266 scopus 로고    scopus 로고
    • Improvements of object detection using boosted histograms
    • Laptev, I., 2004. Improvements of object detection using boosted histograms. In: Proc. British Machine Vision Conference, pp. 53-60.
    • (2004) Proc. British Machine Vision Conference , pp. 53-60
    • Laptev, I.1
  • 22
    • 33744958383 scopus 로고    scopus 로고
    • Integral histogram: A fast way to extract histograms in Cartesian spaces
    • Fatih, P., 2005. Integral histogram: A fast way to extract histograms in Cartesian spaces. In: Proc. Computer Vision and Pattern Recognition.
    • (2005) Proc. Computer Vision and Pattern Recognition
    • Fatih, P.1
  • 25
    • 70450172803 scopus 로고    scopus 로고
    • Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping Monte Carlo sampling
    • Kwon, J., Mu Lee, K., 2009. Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping Monte Carlo sampling. In: Proc. Computer Vision and Pattern Recognition.
    • (2009) Proc. Computer Vision and Pattern Recognition
    • Kwon, J.1    Mu Lee, K.2
  • 27
    • 24644473705 scopus 로고    scopus 로고
    • Online selecting discriminative tracking features using particle filter
    • Wang, J., Chen, X., Gao, W., 2005. Online selecting discriminative tracking features using particle filter. In: Proc. Computer Vision and Pattern Recognition, pp. 1037-1042.
    • (2005) Proc. Computer Vision and Pattern Recognition , pp. 1037-1042
    • Wang, J.1    Chen, X.2    Gao, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.