메뉴 건너뛰기




Volumn 22, Issue 4, 2012, Pages 177-184

SAGA function in tissue-specific gene expression

Author keywords

[No Author keywords available]

Indexed keywords

HISTONE H2B; PROTEINASE; RNA POLYMERASE II; TRANSCRIPTION FACTOR SAGA; UBIQUITIN;

EID: 84859269739     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2011.11.005     Document Type: Article
Times cited : (55)

References (69)
  • 1
    • 77954816833 scopus 로고    scopus 로고
    • Multiple faces of the SAGA complex
    • Koutelou E., et al. Multiple faces of the SAGA complex. Curr. Opin. Cell Biol. 2010, 22:374-382.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 374-382
    • Koutelou, E.1
  • 2
    • 68249129270 scopus 로고    scopus 로고
    • Insights into SAGA function during gene expression
    • Rodriguez-Navarro S. Insights into SAGA function during gene expression. EMBO Rep. 2009, 10:843-850.
    • (2009) EMBO Rep. , vol.10 , pp. 843-850
    • Rodriguez-Navarro, S.1
  • 3
    • 38549131332 scopus 로고    scopus 로고
    • SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual system
    • Weake V.M., et al. SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual system. EMBO J. 2008, 27:394-405.
    • (2008) EMBO J. , vol.27 , pp. 394-405
    • Weake, V.M.1
  • 4
    • 0033623238 scopus 로고    scopus 로고
    • Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development
    • Xu W., et al. Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nat. Genet. 2000, 26:229-232.
    • (2000) Nat. Genet. , vol.26 , pp. 229-232
    • Xu, W.1
  • 5
    • 79960407300 scopus 로고    scopus 로고
    • Post-transcription initiation function of the ubiquitous SAGA complex in tissue-specific gene activation
    • Weake V.M., et al. Post-transcription initiation function of the ubiquitous SAGA complex in tissue-specific gene activation. Genes Dev. 2011, 25:1499-1509.
    • (2011) Genes Dev. , vol.25 , pp. 1499-1509
    • Weake, V.M.1
  • 6
    • 79960080101 scopus 로고    scopus 로고
    • Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes
    • Lee K.K., et al. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol. Syst. Biol. 2011, 7:503.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 503
    • Lee, K.K.1
  • 7
    • 3242680774 scopus 로고    scopus 로고
    • Molecular architecture of the S. cerevisiae SAGA complex
    • Wu P.Y., et al. Molecular architecture of the S. cerevisiae SAGA complex. Mol. Cell 2004, 15:199-208.
    • (2004) Mol. Cell , vol.15 , pp. 199-208
    • Wu, P.Y.1
  • 8
    • 0032911635 scopus 로고    scopus 로고
    • Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction
    • Sterner D.E., et al. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 1999, 19:86-98.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 86-98
    • Sterner, D.E.1
  • 9
    • 0033605238 scopus 로고    scopus 로고
    • Expanded lysine acetylation specificity of Gcn5 in native complexes
    • Grant P.A., et al. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 1999, 274:5895-5900.
    • (1999) J. Biol. Chem. , vol.274 , pp. 5895-5900
    • Grant, P.A.1
  • 10
    • 0037041022 scopus 로고    scopus 로고
    • Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation
    • Balasubramanian R., et al. Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation. J. Biol. Chem. 2002, 277:7989-7995.
    • (2002) J. Biol. Chem. , vol.277 , pp. 7989-7995
    • Balasubramanian, R.1
  • 11
    • 79960621198 scopus 로고    scopus 로고
    • Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation
    • Bian C., et al. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J. 2011, 30:2829-2842.
    • (2011) EMBO J. , vol.30 , pp. 2829-2842
    • Bian, C.1
  • 12
    • 77952519938 scopus 로고    scopus 로고
    • Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module
    • Kohler A., et al. Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell 2010, 141:606-617.
    • (2010) Cell , vol.141 , pp. 606-617
    • Kohler, A.1
  • 13
    • 77953060092 scopus 로고    scopus 로고
    • Structural insights into the assembly and function of the SAGA deubiquitinating module
    • Samara N.L., et al. Structural insights into the assembly and function of the SAGA deubiquitinating module. Science 2010, 328:1025-1029.
    • (2010) Science , vol.328 , pp. 1025-1029
    • Samara, N.L.1
  • 14
    • 12844262945 scopus 로고    scopus 로고
    • H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex
    • Ingvarsdottir K., et al. H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex. Mol. Cell. Biol. 2005, 25:1162-1172.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 1162-1172
    • Ingvarsdottir, K.1
  • 15
    • 68249105095 scopus 로고    scopus 로고
    • Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes
    • Lee K.K., et al. Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes. Epigenet. Chromatin 2009, 2:2.
    • (2009) Epigenet. Chromatin , vol.2 , pp. 2
    • Lee, K.K.1
  • 16
    • 12844277462 scopus 로고    scopus 로고
    • The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex
    • Lee K.K., et al. The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol. Cell. Biol. 2005, 25:1173-1182.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 1173-1182
    • Lee, K.K.1
  • 17
    • 80052597874 scopus 로고    scopus 로고
    • The tightly controlled deubiquitination activity of the human SAGA complex differentially modifies distinct gene regulatory elements
    • Lang G., et al. The tightly controlled deubiquitination activity of the human SAGA complex differentially modifies distinct gene regulatory elements. Mol. Cell. Biol. 2011, 31:3734-3744.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 3734-3744
    • Lang, G.1
  • 18
    • 0242361623 scopus 로고    scopus 로고
    • Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8
    • Henry K.W., et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 2003, 17:2648-2663.
    • (2003) Genes Dev. , vol.17 , pp. 2648-2663
    • Henry, K.W.1
  • 19
    • 38149068875 scopus 로고    scopus 로고
    • A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing
    • Zhao Y., et al. A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol. Cell 2008, 29:92-101.
    • (2008) Mol. Cell , vol.29 , pp. 92-101
    • Zhao, Y.1
  • 20
    • 38149078715 scopus 로고    scopus 로고
    • The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression
    • Zhang X.Y., et al. The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol. Cell 2008, 29:102-111.
    • (2008) Mol. Cell , vol.29 , pp. 102-111
    • Zhang, X.Y.1
  • 21
    • 44649179312 scopus 로고    scopus 로고
    • Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export
    • Kohler A., et al. Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat. Cell Biol. 2008, 10:707-715.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 707-715
    • Kohler, A.1
  • 22
    • 0034892335 scopus 로고    scopus 로고
    • A histone fold TAF octamer within the yeast TFIID transcriptional coactivator
    • Selleck W., et al. A histone fold TAF octamer within the yeast TFIID transcriptional coactivator. Nat. Struct. Biol. 2001, 8:695-700.
    • (2001) Nat. Struct. Biol. , vol.8 , pp. 695-700
    • Selleck, W.1
  • 23
    • 72849129241 scopus 로고    scopus 로고
    • A novel histone fold domain-containing protein that replaces TAF6 in Drosophila SAGA is required for SAGA-dependent gene expression
    • Weake V.M., et al. A novel histone fold domain-containing protein that replaces TAF6 in Drosophila SAGA is required for SAGA-dependent gene expression. Genes Dev. 2009, 23:2818-2823.
    • (2009) Genes Dev. , vol.23 , pp. 2818-2823
    • Weake, V.M.1
  • 24
    • 0035933521 scopus 로고    scopus 로고
    • Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit
    • Brown C.E., et al. Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 2001, 292:2333-2337.
    • (2001) Science , vol.292 , pp. 2333-2337
    • Brown, C.E.1
  • 25
    • 79960630033 scopus 로고    scopus 로고
    • Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex
    • Helmlinger D., et al. Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. EMBO J. 2011, 30:2843-2852.
    • (2011) EMBO J. , vol.30 , pp. 2843-2852
    • Helmlinger, D.1
  • 26
    • 0035425099 scopus 로고    scopus 로고
    • The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4
    • Larschan E., Winston F. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev. 2001, 15:1946-1956.
    • (2001) Genes Dev. , vol.15 , pp. 1946-1956
    • Larschan, E.1    Winston, F.2
  • 27
    • 55749095055 scopus 로고    scopus 로고
    • Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3
    • Mohibullah N., Hahn S. Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Genes Dev. 2008, 22:2994-3006.
    • (2008) Genes Dev. , vol.22 , pp. 2994-3006
    • Mohibullah, N.1    Hahn, S.2
  • 28
    • 37248999781 scopus 로고    scopus 로고
    • Characterization of new Spt3 and TATA-binding protein mutants of Saccharomyces cerevisiae: Spt3 TBP allele-specific interactions and bypass of Spt8
    • Laprade L., et al. Characterization of new Spt3 and TATA-binding protein mutants of Saccharomyces cerevisiae: Spt3 TBP allele-specific interactions and bypass of Spt8. Genetics 2007, 177:2007-2017.
    • (2007) Genetics , vol.177 , pp. 2007-2017
    • Laprade, L.1
  • 29
    • 0035423749 scopus 로고    scopus 로고
    • SAGA is an essential in vivo target of the yeast acidic activator Gal4p
    • Bhaumik S.R., Green M.R. SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes Dev. 2001, 15:1935-1945.
    • (2001) Genes Dev. , vol.15 , pp. 1935-1945
    • Bhaumik, S.R.1    Green, M.R.2
  • 30
    • 68349133311 scopus 로고    scopus 로고
    • Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance
    • Atanassov B.S., et al. Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance. Mol. Cell 2009, 35:352-364.
    • (2009) Mol. Cell , vol.35 , pp. 352-364
    • Atanassov, B.S.1
  • 31
    • 0037716755 scopus 로고    scopus 로고
    • Independent recruitment in vivo by Gal4 of two complexes required for transcription
    • Bryant G.O., Ptashne M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol. Cell 2003, 11:1301-1309.
    • (2003) Mol. Cell , vol.11 , pp. 1301-1309
    • Bryant, G.O.1    Ptashne, M.2
  • 32
    • 77956643239 scopus 로고    scopus 로고
    • Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers
    • Vermeulen M., et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 2010, 142:967-980.
    • (2010) Cell , vol.142 , pp. 967-980
    • Vermeulen, M.1
  • 33
    • 62849096067 scopus 로고    scopus 로고
    • The human SPT20-containing SAGA complex plays a direct role in the regulation of endoplasmic reticulum stress-induced genes
    • Nagy Z., et al. The human SPT20-containing SAGA complex plays a direct role in the regulation of endoplasmic reticulum stress-induced genes. Mol. Cell. Biol. 2009, 29:1649-1660.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 1649-1660
    • Nagy, Z.1
  • 34
    • 34447311914 scopus 로고    scopus 로고
    • H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex
    • Wyce A., et al. H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol. Cell 2007, 27:275-288.
    • (2007) Mol. Cell , vol.27 , pp. 275-288
    • Wyce, A.1
  • 35
    • 65649085555 scopus 로고    scopus 로고
    • Genome-wide mapping of the coactivator Ada2p yields insight into the functional roles of SAGA/ADA complex in Candida albicans
    • Sellam A., et al. Genome-wide mapping of the coactivator Ada2p yields insight into the functional roles of SAGA/ADA complex in Candida albicans. Mol. Biol. Cell 2009, 20:2389-2400.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 2389-2400
    • Sellam, A.1
  • 36
    • 79951493843 scopus 로고    scopus 로고
    • A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces
    • Venters B.J., et al. A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol. Cell 2011, 41:480-492.
    • (2011) Mol. Cell , vol.41 , pp. 480-492
    • Venters, B.J.1
  • 37
    • 73349085619 scopus 로고    scopus 로고
    • The loss of histone H3 lysine 9 acetylation due to dSAGA-specific dAda2b mutation influences the expression of only a small subset of genes
    • Zsindely N., et al. The loss of histone H3 lysine 9 acetylation due to dSAGA-specific dAda2b mutation influences the expression of only a small subset of genes. Nucleic Acids Res. 2009, 37:6665-6680.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 6665-6680
    • Zsindely, N.1
  • 38
    • 1042289670 scopus 로고    scopus 로고
    • In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer
    • Bhaumik S.R., et al. In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes Dev. 2004, 18:333-343.
    • (2004) Genes Dev. , vol.18 , pp. 333-343
    • Bhaumik, S.R.1
  • 39
    • 18944364218 scopus 로고    scopus 로고
    • Function of a eukaryotic transcription activator during the transcription cycle
    • Fishburn J., et al. Function of a eukaryotic transcription activator during the transcription cycle. Mol. Cell 2005, 18:369-378.
    • (2005) Mol. Cell , vol.18 , pp. 369-378
    • Fishburn, J.1
  • 40
    • 26444507919 scopus 로고    scopus 로고
    • Targets of the Gal4 transcription activator in functional transcription complexes
    • Reeves W.M., Hahn S. Targets of the Gal4 transcription activator in functional transcription complexes. Mol. Cell. Biol. 2005, 25:9092-9102.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 9092-9102
    • Reeves, W.M.1    Hahn, S.2
  • 41
    • 0032493894 scopus 로고    scopus 로고
    • The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins
    • McMahon S.B., et al. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 1998, 94:363-374.
    • (1998) Cell , vol.94 , pp. 363-374
    • McMahon, S.B.1
  • 42
    • 0032254147 scopus 로고    scopus 로고
    • The ATM-related cofactor Tra1 is a component of the purified SAGA complex
    • Grant P.A., et al. The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol. Cell 1998, 2:863-867.
    • (1998) Mol. Cell , vol.2 , pp. 863-867
    • Grant, P.A.1
  • 43
    • 0033567954 scopus 로고    scopus 로고
    • NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p
    • Allard S., et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J. 1999, 18:5108-5119.
    • (1999) EMBO J. , vol.18 , pp. 5108-5119
    • Allard, S.1
  • 44
    • 77956641222 scopus 로고    scopus 로고
    • Transformation/transcription domain-associated protein (TRRAP)-mediated regulation of Wee1
    • Calonge T.M., et al. Transformation/transcription domain-associated protein (TRRAP)-mediated regulation of Wee1. Genetics 2010, 185:81-93.
    • (2010) Genetics , vol.185 , pp. 81-93
    • Calonge, T.M.1
  • 45
    • 0036847620 scopus 로고    scopus 로고
    • Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes
    • Hassan A.H., et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 2002, 111:369-379.
    • (2002) Cell , vol.111 , pp. 369-379
    • Hassan, A.H.1
  • 46
    • 77955053182 scopus 로고    scopus 로고
    • The structural plasticity of SCA7 domains defines their differential nucleosome-binding properties
    • Bonnet J., et al. The structural plasticity of SCA7 domains defines their differential nucleosome-binding properties. EMBO Rep. 2010, 11:612-618.
    • (2010) EMBO Rep. , vol.11 , pp. 612-618
    • Bonnet, J.1
  • 47
    • 33747072322 scopus 로고    scopus 로고
    • Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster
    • Moorman C., et al. Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:12027-12032.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 12027-12032
    • Moorman, C.1
  • 48
    • 70449132583 scopus 로고    scopus 로고
    • Combinatorial binding predicts spatio-temporal cis-regulatory activity
    • Zinzen R.P., et al. Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 2009, 462:65-70.
    • (2009) Nature , vol.462 , pp. 65-70
    • Zinzen, R.P.1
  • 49
    • 0001262663 scopus 로고    scopus 로고
    • Redundant roles for the TFIID and SAGA complexes in global transcription
    • Lee T.I., et al. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 2000, 405:701-704.
    • (2000) Nature , vol.405 , pp. 701-704
    • Lee, T.I.1
  • 50
    • 79959847254 scopus 로고    scopus 로고
    • The role of deubiquitinating enzymes in chromatin regulation
    • Atanassov B.S., et al. The role of deubiquitinating enzymes in chromatin regulation. FEBS Lett. 2011, 585:2016-2023.
    • (2011) FEBS Lett. , vol.585 , pp. 2016-2023
    • Atanassov, B.S.1
  • 51
    • 40849106789 scopus 로고    scopus 로고
    • Histone ubiquitination: triggering gene activity
    • Weake V.M., Workman J.L. Histone ubiquitination: triggering gene activity. Mol. Cell 2008, 29:653-663.
    • (2008) Mol. Cell , vol.29 , pp. 653-663
    • Weake, V.M.1    Workman, J.L.2
  • 52
    • 70249104647 scopus 로고    scopus 로고
    • Defining mechanisms that regulate RNA polymerase II transcription in vivo
    • Fuda N.J., et al. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 2009, 461:186-192.
    • (2009) Nature , vol.461 , pp. 186-192
    • Fuda, N.J.1
  • 53
    • 36549013619 scopus 로고    scopus 로고
    • RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo
    • Zeitlinger J., et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet. 2007, 39:1512-1516.
    • (2007) Nat. Genet. , vol.39 , pp. 1512-1516
    • Zeitlinger, J.1
  • 54
    • 36549061004 scopus 로고    scopus 로고
    • RNA polymerase is poised for activation across the genome
    • Muse G.W., et al. RNA polymerase is poised for activation across the genome. Nat. Genet. 2007, 39:1507-1511.
    • (2007) Nat. Genet. , vol.39 , pp. 1507-1511
    • Muse, G.W.1
  • 55
    • 78149477660 scopus 로고    scopus 로고
    • Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation
    • Gilchrist D.A., et al. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 2010, 143:540-551.
    • (2010) Cell , vol.143 , pp. 540-551
    • Gilchrist, D.A.1
  • 56
    • 77957766550 scopus 로고    scopus 로고
    • Uniform transitions of the general RNA polymerase II transcription complex
    • Mayer A., et al. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 2010, 17:1272-1278.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1272-1278
    • Mayer, A.1
  • 57
    • 77958587420 scopus 로고    scopus 로고
    • CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1
    • Bartkowiak B., et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 2010, 24:2303-2316.
    • (2010) Genes Dev. , vol.24 , pp. 2303-2316
    • Bartkowiak, B.1
  • 58
    • 67349153355 scopus 로고    scopus 로고
    • Spt6 enhances the elongation rate of RNA polymerase II in vivo
    • Ardehali M.B., et al. Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J. 2009, 28:1067-1077.
    • (2009) EMBO J. , vol.28 , pp. 1067-1077
    • Ardehali, M.B.1
  • 59
    • 70349731733 scopus 로고    scopus 로고
    • Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability
    • Chandrasekharan M.B., et al. Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:16686-16691.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 16686-16691
    • Chandrasekharan, M.B.1
  • 60
    • 0028235824 scopus 로고
    • Histone H2B (and H2A) ubiquitination allows normal histone octamer and core particle reconstitution
    • Davies N., Lindsey G.G. Histone H2B (and H2A) ubiquitination allows normal histone octamer and core particle reconstitution. Biochim. Biophys. Acta 1994, 1218:187-193.
    • (1994) Biochim. Biophys. Acta , vol.1218 , pp. 187-193
    • Davies, N.1    Lindsey, G.G.2
  • 61
    • 80455162312 scopus 로고    scopus 로고
    • Genome-wide function of H2B ubiquitylation in promoter and genic regions
    • Batta K., et al. Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev. 2011, 25:2254-2265.
    • (2011) Genes Dev. , vol.25 , pp. 2254-2265
    • Batta, K.1
  • 62
    • 77952569347 scopus 로고    scopus 로고
    • Inducible gene expression: diverse regulatory mechanisms
    • Weake V.M., Workman J.L. Inducible gene expression: diverse regulatory mechanisms. Nat. Rev. Genet. 2010, 11:426-437.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 426-437
    • Weake, V.M.1    Workman, J.L.2
  • 63
    • 46149091721 scopus 로고    scopus 로고
    • H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation
    • Fleming A.B., et al. H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol. Cell 2008, 31:57-66.
    • (2008) Mol. Cell , vol.31 , pp. 57-66
    • Fleming, A.B.1
  • 64
    • 80052281618 scopus 로고    scopus 로고
    • USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1
    • Atanassov B.S., Dent S.Y. USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1. EMBO Rep. 2011, 12:924-930.
    • (2011) EMBO Rep. , vol.12 , pp. 924-930
    • Atanassov, B.S.1    Dent, S.Y.2
  • 65
    • 79960326517 scopus 로고    scopus 로고
    • Ubp8 and SAGA regulate Snf1 AMP kinase activity
    • Wilson M.A., et al. Ubp8 and SAGA regulate Snf1 AMP kinase activity. Mol. Cell. Biol. 2011, 31:3126-3135.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 3126-3135
    • Wilson, M.A.1
  • 66
    • 77955057783 scopus 로고    scopus 로고
    • AMPK supports growth in Drosophila by regulating muscle activity and nutrient uptake in the gut
    • Bland M.L., et al. AMPK supports growth in Drosophila by regulating muscle activity and nutrient uptake in the gut. Dev. Biol. 2010, 344:293-303.
    • (2010) Dev. Biol. , vol.344 , pp. 293-303
    • Bland, M.L.1
  • 67
    • 38149098408 scopus 로고    scopus 로고
    • Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation
    • Zhou W., et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol. Cell 2008, 29:69-80.
    • (2008) Mol. Cell , vol.29 , pp. 69-80
    • Zhou, W.1
  • 68
    • 77951947926 scopus 로고    scopus 로고
    • Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination
    • Eskeland R., et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 2010, 38:452-464.
    • (2010) Mol. Cell , vol.38 , pp. 452-464
    • Eskeland, R.1
  • 69
    • 84859267880 scopus 로고    scopus 로고
    • Chromatin remodelling and the transcription cycle
    • [Poster]
    • Weake V.M., Workman J.L. Chromatin remodelling and the transcription cycle. Nat. Rev. Genet. 2011, 12. [Poster].
    • (2011) Nat. Rev. Genet. , pp. 12
    • Weake, V.M.1    Workman, J.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.