메뉴 건너뛰기




Volumn 7, Issue 4, 2012, Pages 398-410

The integration of artificial neural networks and particle swarm optimization to forecast world green energy consumption

Author keywords

artificial neural networks; forecasting; fossil fuels; green energy; particle swarm optimization

Indexed keywords

CORRELATION COEFFICIENT; FEED-FORWARD BACK PROPAGATION; GREEN ENERGY; GROSS DOMESTIC PRODUCTS; OBSERVED DATA; OIL TRADE; PARTICLE SWARM; PRIMARY ENERGIES; PRIMARY ENERGY CONSUMPTION; PRIMARY ENERGY DEMAND; SOCIOECONOMIC INDICATORS; TIME DOMAIN; WORLD POPULATION;

EID: 84859186251     PISSN: 15567249     EISSN: 15567257     Source Type: Journal    
DOI: 10.1080/15567241003792341     Document Type: Article
Times cited : (13)

References (26)
  • 1
    • 78649815601 scopus 로고    scopus 로고
    • Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran
    • Assareh, E., Behrang, M. A., Assari, M. R., and Ghanbarzadeh, A. 2010. Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran. Energy 35:5223-5229.
    • (2010) Energy , vol.35 , pp. 5223-5229
    • Assareh, E.1    Behrang, M.A.2    Assari, M.R.3    Ghanbarzadeh, A.4
  • 2
    • 84859169967 scopus 로고    scopus 로고
    • Forecasting energy demand in Iran using genetic algorithm (GA) and particle swarm optimization (PSO) methods
    • Assareh, E., Behrang, M. A., and Ghanbarzadeh, A. 2012. Forecasting energy demand in Iran using genetic algorithm (GA) and particle swarm optimization (PSO) methods. Energ. Source. Part B 7:411-422.
    • (2012) Energ. Source. Part B , vol.7 , pp. 411-422
    • Assareh, E.1    Behrang, M.A.2    Ghanbarzadeh, A.3
  • 3
    • 44649152880 scopus 로고    scopus 로고
    • A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
    • Azadeh, A., Ghaderi, S. F., and Sohrabkhani, S. 2008. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energ. Policy 36:2637-2644.
    • (2008) Energ. Policy , vol.36 , pp. 2637-2644
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 4
    • 79953001610 scopus 로고    scopus 로고
    • Assessment of electricity demand in Iran's industrial sector using different intelligent optimization techniques
    • Behrang, M. A., Assareh, E., Assari, M. R., and Ghanbarzadeh, A. 2011a. Assessment of electricity demand in Iran's industrial sector using different intelligent optimization techniques. Appl. Arti. Intel. 25:292-304.
    • (2011) Appl. Arti. Intel. , vol.25 , pp. 292-304
    • Behrang, M.A.1    Assareh, E.2    Assari, M.R.3    Ghanbarzadeh, A.4
  • 5
    • 79961041341 scopus 로고    scopus 로고
    • Using bees algorithm and artificial neural network to forecast world carbon dioxide emission
    • Behrang, M. A., Assareh, E., Assari, M. R., and Ghanbarzadeh, A. 2011b. Using bees algorithm and artificial neural network to forecast world carbon dioxide emission. Energ. Source. Part A 33:1747-1759.
    • (2011) Energ. Source. Part A , vol.33 , pp. 1747-1759
    • Behrang, M.A.1    Assareh, E.2    Assari, M.R.3    Ghanbarzadeh, A.4
  • 6
    • 79960344497 scopus 로고    scopus 로고
    • Total energy demand estimation in Iran using bees algorithm
    • Behrang, M. A., Assareh, E., and Ghanbarzadeh, A. 2011. Total energy demand estimation in Iran using Bees Algorithm. Energ. Source. Part B 6:294-303.
    • (2011) Energ. Source. Part B , vol.6 , pp. 294-303
    • Behrang, M.A.1    Assareh, E.2    Ghanbarzadeh, A.3
  • 7
    • 77954309362 scopus 로고    scopus 로고
    • The potential of different Artificial Neural Network (ANN) techniques in daily global solar radiation modeling based on meteorological data
    • Behrang, M. A., Assareh, E., Ghanbarzadeh, A., Noghrehabadi, A. R. 2010. The potential of different Artificial Neural Network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy 84:1468-80.
    • (2010) Solar Energy , vol.84 , pp. 1468-1480
    • Behrang, M.A.1    Assareh, E.2    Ghanbarzadeh, A.3    Noghrehabadi, A.R.4
  • 8
    • 80052078913 scopus 로고    scopus 로고
    • Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm)
    • Behrang, M. A., Assareh, E., Ghalambaz, M., Assari, M. R., and Noghrehabadi, A. R. 2011d. Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm). Energy 36:5649-5654.
    • (2011) Energy , vol.36 , pp. 5649-5654
    • Behrang, M.A.1    Assareh, E.2    Ghalambaz, M.3    Assari, M.R.4    Noghrehabadi, A.R.5
  • 9
    • 79955670335 scopus 로고    scopus 로고
    • New sunshinebased models for predicting global solar radiation using PSO (particle swarm optimization) technique
    • Behrang, M. A., Assareh, E., Noghrehabadi, A. R., and Ghanbarzadeh, A. 2011e. New sunshinebased models for predicting global solar radiation using PSO (particle swarm optimization) technique. Energy 36:3036-3049.
    • (2011) Energy , vol.36 , pp. 3036-3049
    • Behrang, M.A.1    Assareh, E.2    Noghrehabadi, A.R.3    Ghanbarzadeh, A.4
  • 10
    • 57449118956 scopus 로고    scopus 로고
    • British Petroleum (BP)
    • British Petroleum (BP). 2008. Statistical review of world energy 2008. Available at: http://www.bp. com/statisticalreview.
    • (2008) Statistical Review of World Energy 2008
  • 11
    • 34249068297 scopus 로고    scopus 로고
    • Locating multiple optima using particle swarm optimization
    • DOI 10.1016/j.amc.2006.12.066, PII S0096300306017826
    • Brits, R., Engelbrecht, A. P., and van den Bergh, F. 2007. Locating multiple optima using particle swarm optimization. Appl. Math. Comput. 189:1859-1883. (Pubitemid 46802795)
    • (2007) Applied Mathematics and Computation , vol.189 , Issue.2 , pp. 1859-1883
    • Brits, R.1    Engelbrecht, A.P.2    Van Den Bergh, F.3
  • 12
    • 44649149565 scopus 로고    scopus 로고
    • Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey
    • Canyurt, O. E., and Ozturk, H. K. 2008. Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey. Energ. Policy 36:2562-2569.
    • (2008) Energ. Policy , vol.36 , pp. 2562-2569
    • Canyurt, O.E.1    Ozturk, H.K.2
  • 13
    • 84859200844 scopus 로고    scopus 로고
    • Annual energy outlook 2008
    • Energy Information Administration (EIA) Washington DC: Energy Information Administration
    • Energy Information Administration (EIA) 2008. Annual energy outlook, 2008. DOE/EIA-0484-Low Economic Growth Case Projections. Washington, DC: Energy Information Administration.
    • (2008) DOE/EIA-0484-Low Economic Growth Case Projections
  • 15
    • 33845273062 scopus 로고    scopus 로고
    • Artificial neural network analysis of world green energy use
    • DOI 10.1016/j.enpol.2006.04.015, PII S0301421506001972
    • Ermis, K., Midilli, A., Dincer, I., and Rosen, M. A. 2007. Artificial neural network analysis of world green energy use. Energ. Policy 35:1731-1743. (Pubitemid 44858147)
    • (2007) Energy Policy , vol.35 , Issue.3 , pp. 1731-1743
    • Ermis, K.1    Midilli, A.2    Dincer, I.3    Rosen, M.A.4
  • 16
    • 80051485693 scopus 로고    scopus 로고
    • International Energy Agency (IEA) Paris: International Energy Agency
    • International Energy Agency (IEA). 2008. Keyword energy statistic, 2008. Paris: International Energy Agency.
    • (2008) Keyword Energy Statistic 2008
  • 17
    • 0029535737 scopus 로고
    • Particle swarm optimization
    • Kennedy, J., and Eberhart, R. 1995. Particle swarm optimization. IEEE 4:1942-1948.
    • (1995) IEEE , vol.4 , pp. 1942-1948
    • Kennedy, J.1    Eberhart, R.2
  • 18
    • 34447293997 scopus 로고    scopus 로고
    • Particle swarm optimization based on dynamic niche technology with applications to conceptual design
    • DOI 10.1016/j.advengsoft.2006.10.009, PII S0965997806001761
    • Liu, X., Liu, H., and Duan, H. 2007. Particle swarm optimization based on dynamic niche technology with applications to conceptual design. Adv. Eng. Softw. 38:668-676. (Pubitemid 47043447)
    • (2007) Advances in Engineering Software , vol.38 , Issue.10 , pp. 668-676
    • Liu, X.1    Liu, H.2    Duan, H.3
  • 19
    • 33750481534 scopus 로고    scopus 로고
    • Particle swarm optimization for function optimization in noisy environment
    • DOI 10.1016/j.amc.2006.01.066, PII S0096300306001718
    • Pan, H., Wang, L., and Liu, B. 2006. Particle swarm optimization for function optimization in noisy environment. Appl. Math. Comput. 181:908-919. (Pubitemid 44646568)
    • (2006) Applied Mathematics and Computation , vol.181 , Issue.2 , pp. 908-919
    • Pan, H.1    Wang, L.2    Liu, B.3
  • 21
    • 0343062497 scopus 로고
    • Neural networks for identification
    • London: Springer Verlag
    • Pham, D. T., and Liu, X. 1995. Neural Networks for Identification, Prediction and Control, London: Springer Verlag.
    • (1995) Prediction and Control
    • Pham, D.T.1    Liu, X.2
  • 23
    • 84879015433 scopus 로고    scopus 로고
    • Parameter Selection in Particle Swarm Optimization
    • Evolutionary Programming VII
    • Shi, Y., and Eberhart, R. 1998b. Parameter selection in particle swarm optimization. Proc. EP98 7:591-600. (Pubitemid 128118969)
    • (1998) Lecture Notes in Computer Science , Issue.1447 , pp. 591-600
    • Shi, Y.1    Eberhart, R.C.2
  • 24
    • 43149117467 scopus 로고    scopus 로고
    • Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025
    • Unler, A. 2008. Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025. Energ. Policy 36:1937-1944.
    • (2008) Energ. Policy , vol.36 , pp. 1937-1944
    • Unler, A.1
  • 25
    • 34447535438 scopus 로고    scopus 로고
    • Performing complex project crashing analysis with aid of particle swarm optimization algorithm
    • Yang, I. T. 2007. Performing complex project crashing analysis with aid of particle swarm optimization algorithm. Int. J. Proj. Manag 25:637-646.
    • (2007) Int. J. Proj. Manag , vol.25 , pp. 637-646
    • Yang, I.T.1
  • 26
    • 64049096918 scopus 로고    scopus 로고
    • Pitch angle control in wind turbines above the rated wind speed by multi-layer percepteron and redial basis function neural networks
    • Yilmaz, A. S., and Ozer, Z. 2009. Pitch angle control in wind turbines above the rated wind speed by multi-layer percepteron and redial basis function neural networks. Expert Syst. Appl. 36:9767-9775.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9767-9775
    • Yilmaz, A.S.1    Ozer, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.