-
1
-
-
78649815601
-
Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran
-
Assareh, E., Behrang, M. A., Assari, M. R., and Ghanbarzadeh, A. 2010. Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran. Energy 35:5223-5229.
-
(2010)
Energy
, vol.35
, pp. 5223-5229
-
-
Assareh, E.1
Behrang, M.A.2
Assari, M.R.3
Ghanbarzadeh, A.4
-
2
-
-
84859169967
-
Forecasting energy demand in Iran using genetic algorithm (GA) and particle swarm optimization (PSO) methods
-
Assareh, E., Behrang, M. A., and Ghanbarzadeh, A. 2012. Forecasting energy demand in Iran using genetic algorithm (GA) and particle swarm optimization (PSO) methods. Energ. Source. Part B 7:411-422.
-
(2012)
Energ. Source. Part B
, vol.7
, pp. 411-422
-
-
Assareh, E.1
Behrang, M.A.2
Ghanbarzadeh, A.3
-
3
-
-
44649152880
-
A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
-
Azadeh, A., Ghaderi, S. F., and Sohrabkhani, S. 2008. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energ. Policy 36:2637-2644.
-
(2008)
Energ. Policy
, vol.36
, pp. 2637-2644
-
-
Azadeh, A.1
Ghaderi, S.F.2
Sohrabkhani, S.3
-
4
-
-
79953001610
-
Assessment of electricity demand in Iran's industrial sector using different intelligent optimization techniques
-
Behrang, M. A., Assareh, E., Assari, M. R., and Ghanbarzadeh, A. 2011a. Assessment of electricity demand in Iran's industrial sector using different intelligent optimization techniques. Appl. Arti. Intel. 25:292-304.
-
(2011)
Appl. Arti. Intel.
, vol.25
, pp. 292-304
-
-
Behrang, M.A.1
Assareh, E.2
Assari, M.R.3
Ghanbarzadeh, A.4
-
5
-
-
79961041341
-
Using bees algorithm and artificial neural network to forecast world carbon dioxide emission
-
Behrang, M. A., Assareh, E., Assari, M. R., and Ghanbarzadeh, A. 2011b. Using bees algorithm and artificial neural network to forecast world carbon dioxide emission. Energ. Source. Part A 33:1747-1759.
-
(2011)
Energ. Source. Part A
, vol.33
, pp. 1747-1759
-
-
Behrang, M.A.1
Assareh, E.2
Assari, M.R.3
Ghanbarzadeh, A.4
-
6
-
-
79960344497
-
Total energy demand estimation in Iran using bees algorithm
-
Behrang, M. A., Assareh, E., and Ghanbarzadeh, A. 2011. Total energy demand estimation in Iran using Bees Algorithm. Energ. Source. Part B 6:294-303.
-
(2011)
Energ. Source. Part B
, vol.6
, pp. 294-303
-
-
Behrang, M.A.1
Assareh, E.2
Ghanbarzadeh, A.3
-
7
-
-
77954309362
-
The potential of different Artificial Neural Network (ANN) techniques in daily global solar radiation modeling based on meteorological data
-
Behrang, M. A., Assareh, E., Ghanbarzadeh, A., Noghrehabadi, A. R. 2010. The potential of different Artificial Neural Network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy 84:1468-80.
-
(2010)
Solar Energy
, vol.84
, pp. 1468-1480
-
-
Behrang, M.A.1
Assareh, E.2
Ghanbarzadeh, A.3
Noghrehabadi, A.R.4
-
8
-
-
80052078913
-
Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm)
-
Behrang, M. A., Assareh, E., Ghalambaz, M., Assari, M. R., and Noghrehabadi, A. R. 2011d. Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm). Energy 36:5649-5654.
-
(2011)
Energy
, vol.36
, pp. 5649-5654
-
-
Behrang, M.A.1
Assareh, E.2
Ghalambaz, M.3
Assari, M.R.4
Noghrehabadi, A.R.5
-
9
-
-
79955670335
-
New sunshinebased models for predicting global solar radiation using PSO (particle swarm optimization) technique
-
Behrang, M. A., Assareh, E., Noghrehabadi, A. R., and Ghanbarzadeh, A. 2011e. New sunshinebased models for predicting global solar radiation using PSO (particle swarm optimization) technique. Energy 36:3036-3049.
-
(2011)
Energy
, vol.36
, pp. 3036-3049
-
-
Behrang, M.A.1
Assareh, E.2
Noghrehabadi, A.R.3
Ghanbarzadeh, A.4
-
10
-
-
57449118956
-
-
British Petroleum (BP)
-
British Petroleum (BP). 2008. Statistical review of world energy 2008. Available at: http://www.bp. com/statisticalreview.
-
(2008)
Statistical Review of World Energy 2008
-
-
-
11
-
-
34249068297
-
Locating multiple optima using particle swarm optimization
-
DOI 10.1016/j.amc.2006.12.066, PII S0096300306017826
-
Brits, R., Engelbrecht, A. P., and van den Bergh, F. 2007. Locating multiple optima using particle swarm optimization. Appl. Math. Comput. 189:1859-1883. (Pubitemid 46802795)
-
(2007)
Applied Mathematics and Computation
, vol.189
, Issue.2
, pp. 1859-1883
-
-
Brits, R.1
Engelbrecht, A.P.2
Van Den Bergh, F.3
-
12
-
-
44649149565
-
Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey
-
Canyurt, O. E., and Ozturk, H. K. 2008. Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey. Energ. Policy 36:2562-2569.
-
(2008)
Energ. Policy
, vol.36
, pp. 2562-2569
-
-
Canyurt, O.E.1
Ozturk, H.K.2
-
13
-
-
84859200844
-
Annual energy outlook 2008
-
Energy Information Administration (EIA) Washington DC: Energy Information Administration
-
Energy Information Administration (EIA) 2008. Annual energy outlook, 2008. DOE/EIA-0484-Low Economic Growth Case Projections. Washington, DC: Energy Information Administration.
-
(2008)
DOE/EIA-0484-Low Economic Growth Case Projections
-
-
-
15
-
-
33845273062
-
Artificial neural network analysis of world green energy use
-
DOI 10.1016/j.enpol.2006.04.015, PII S0301421506001972
-
Ermis, K., Midilli, A., Dincer, I., and Rosen, M. A. 2007. Artificial neural network analysis of world green energy use. Energ. Policy 35:1731-1743. (Pubitemid 44858147)
-
(2007)
Energy Policy
, vol.35
, Issue.3
, pp. 1731-1743
-
-
Ermis, K.1
Midilli, A.2
Dincer, I.3
Rosen, M.A.4
-
16
-
-
80051485693
-
-
International Energy Agency (IEA) Paris: International Energy Agency
-
International Energy Agency (IEA). 2008. Keyword energy statistic, 2008. Paris: International Energy Agency.
-
(2008)
Keyword Energy Statistic 2008
-
-
-
17
-
-
0029535737
-
Particle swarm optimization
-
Kennedy, J., and Eberhart, R. 1995. Particle swarm optimization. IEEE 4:1942-1948.
-
(1995)
IEEE
, vol.4
, pp. 1942-1948
-
-
Kennedy, J.1
Eberhart, R.2
-
18
-
-
34447293997
-
Particle swarm optimization based on dynamic niche technology with applications to conceptual design
-
DOI 10.1016/j.advengsoft.2006.10.009, PII S0965997806001761
-
Liu, X., Liu, H., and Duan, H. 2007. Particle swarm optimization based on dynamic niche technology with applications to conceptual design. Adv. Eng. Softw. 38:668-676. (Pubitemid 47043447)
-
(2007)
Advances in Engineering Software
, vol.38
, Issue.10
, pp. 668-676
-
-
Liu, X.1
Liu, H.2
Duan, H.3
-
19
-
-
33750481534
-
Particle swarm optimization for function optimization in noisy environment
-
DOI 10.1016/j.amc.2006.01.066, PII S0096300306001718
-
Pan, H., Wang, L., and Liu, B. 2006. Particle swarm optimization for function optimization in noisy environment. Appl. Math. Comput. 181:908-919. (Pubitemid 44646568)
-
(2006)
Applied Mathematics and Computation
, vol.181
, Issue.2
, pp. 908-919
-
-
Pan, H.1
Wang, L.2
Liu, B.3
-
20
-
-
33947329356
-
Optimisation of the weights of multilayered perceptrons using the bees algorithm
-
Sakarya, Turkey, May 29-31
-
Pham, D. T., Koç, E., Ghanbarzadeh, A., and Otri, S. 2006. Optimisation of the weights of multilayered perceptrons using the bees algorithm. Proceedings of 5th International Symposium on Intelligent Manufacturing Systems, Sakarya, Turkey, May 29-31, pp. 38-46.
-
(2006)
Proceedings of 5th International Symposium on Intelligent Manufacturing Systems
, pp. 38-46
-
-
Pham, D.T.1
Koç, E.2
Ghanbarzadeh, A.3
Otri, S.4
-
21
-
-
0343062497
-
Neural networks for identification
-
London: Springer Verlag
-
Pham, D. T., and Liu, X. 1995. Neural Networks for Identification, Prediction and Control, London: Springer Verlag.
-
(1995)
Prediction and Control
-
-
Pham, D.T.1
Liu, X.2
-
22
-
-
0031700696
-
A modified particle swarm optimizer
-
Anchorage, Alaska, May
-
Shi, Y., and Eberhart, R. 1998a. A modified particle swarm optimizer. Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May, pp. 69-73.
-
(1998)
Proceedings of the IEEE International Conference on Evolutionary Computation
, pp. 69-73
-
-
Shi, Y.1
Eberhart, R.2
-
23
-
-
84879015433
-
Parameter Selection in Particle Swarm Optimization
-
Evolutionary Programming VII
-
Shi, Y., and Eberhart, R. 1998b. Parameter selection in particle swarm optimization. Proc. EP98 7:591-600. (Pubitemid 128118969)
-
(1998)
Lecture Notes in Computer Science
, Issue.1447
, pp. 591-600
-
-
Shi, Y.1
Eberhart, R.C.2
-
24
-
-
43149117467
-
Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025
-
Unler, A. 2008. Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025. Energ. Policy 36:1937-1944.
-
(2008)
Energ. Policy
, vol.36
, pp. 1937-1944
-
-
Unler, A.1
-
25
-
-
34447535438
-
Performing complex project crashing analysis with aid of particle swarm optimization algorithm
-
Yang, I. T. 2007. Performing complex project crashing analysis with aid of particle swarm optimization algorithm. Int. J. Proj. Manag 25:637-646.
-
(2007)
Int. J. Proj. Manag
, vol.25
, pp. 637-646
-
-
Yang, I.T.1
-
26
-
-
64049096918
-
Pitch angle control in wind turbines above the rated wind speed by multi-layer percepteron and redial basis function neural networks
-
Yilmaz, A. S., and Ozer, Z. 2009. Pitch angle control in wind turbines above the rated wind speed by multi-layer percepteron and redial basis function neural networks. Expert Syst. Appl. 36:9767-9775.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 9767-9775
-
-
Yilmaz, A.S.1
Ozer, Z.2
|