메뉴 건너뛰기




Volumn 33, Issue 19, 2011, Pages 1747-1759

Using bees algorithm and artificial neural network to forecast world carbon dioxide emission

Author keywords

artificial neural networks; bees algorithm; carbon dioxide emission; forecasting; fossil fuels; primary energy

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BEES ALGORITHMS; CARBON DIOXIDE EMISSION; CARBON DIOXIDE EMISSIONS; CORRELATION COEFFICIENT; GROSS DOMESTIC PRODUCTS; MULTI-LAYER PERCEPTRON NEURAL NETWORKS; OBSERVED DATA; OIL TRADE; PRIMARY ENERGIES; PRIMARY ENERGY CONSUMPTION; PRIMARY ENERGY DEMAND; SOCIO-ECONOMICS; TIME DOMAIN;

EID: 79961041341     PISSN: 15567036     EISSN: 15567230     Source Type: Journal    
DOI: 10.1080/15567036.2010.493920     Document Type: Article
Times cited : (54)

References (29)
  • 3
    • 78649815601 scopus 로고    scopus 로고
    • Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran
    • Assareh, E., Behrang, M. A., Assari, M. R., and Ghanbarzadeh, A. 2010b. Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran. Energy 35:5223-5229.
    • (2010) Energy , vol.35 , pp. 5223-5229
    • Assareh, E.1    Behrang, M.A.2    Assari, M.R.3    Ghanbarzadeh, A.4
  • 4
    • 44649152880 scopus 로고    scopus 로고
    • A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
    • Azadeh, A., Ghaderi, S. F., and Sohrabkhani, S. 2008. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy 36:2637-2644.
    • (2008) Energy Policy , vol.36 , pp. 2637-2644
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 6
    • 79953001610 scopus 로고    scopus 로고
    • Assessment of electricity demand in Iran's industrial sector using different intelligent optimization techniques
    • Behrang, M. A., Assareh, E., Assari, M. R., and Ghanbarzadeh,A. 2011a. Assessment of electricity demand in Iran's industrial sector using different intelligent optimization techniques. Appl. Artif. Intell. 25:292-304.
    • (2011) Appl. Artif. Intell. , vol.25 , pp. 292-304
    • Behrang, M.A.1    Assareh, E.2    Assari, M.R.3    Ghanbarzadeh, A.4
  • 7
    • 77954309362 scopus 로고    scopus 로고
    • The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data
    • Behrang, M. A., Assareh, E., Ghanbarzadeh, A., and Noghrehabadi, A. R. 2010. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Sol. Energy 84:1468-1480.
    • (2010) Sol. Energy , vol.84 , pp. 1468-1480
    • Behrang, M.A.1    Assareh, E.2    Ghanbarzadeh, A.3    Noghrehabadi, A.R.4
  • 8
    • 79955670335 scopus 로고    scopus 로고
    • New sunshinebased models for predicting global solar radiation using PSO (particle swarm optimization) technique
    • Behrang, M. A., Assareh, E., Noghrehabadi, A. R., and Ghanbarzadeh, A. 2011b. New sunshinebased models for predicting global solar radiation using PSO (particle swarm optimization) technique. Energy 36:3036-3049.
    • (2011) Energy , vol.36 , pp. 3036-3049
    • Behrang, M.A.1    Assareh, E.2    Noghrehabadi, A.R.3    Ghanbarzadeh, A.4
  • 11
    • 44649149565 scopus 로고    scopus 로고
    • Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey
    • Canyurt, O. E., and Ozturk, H. K. 2008. Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey. Energy Policy 36:2562-2569.
    • (2008) Energy Policy , vol.36 , pp. 2562-2569
    • Canyurt, O.E.1    Ozturk, H.K.2
  • 12
    • 0032658239 scopus 로고    scopus 로고
    • A modeling framework for estimating energy demand and CO2 emissions from energy intensive industries in India
    • Das, A., and Kandpal, T. C. 1999. A modeling framework for estimating energy demand and CO2 emissions from energy intensive industries in India. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 21:649-661.
    • (1999) Energy Sources, Part A: Recovery, Utilization, and Environmental Effects , vol.21 , pp. 649-661
    • Das, A.1    Kandpal, T.C.2
  • 13
    • 20644453305 scopus 로고    scopus 로고
    • The potential for greenhouse gases mitigation in household sector of Iran: Cases of price reform/efficiency improvement and scenario for 2000-2010
    • DOI 10.1016/j.enpol.2004.06.001, PII S0301421504001661
    • Davoudpour, H., and Sadegh Ahadi, M. 2006. The potential for greenhouse gases mitigation in household sector of Iran: Cases of price reform/efficiency improvement and scenario for 2000- 2010. Energy Policy 34:40-49. (Pubitemid 40836199)
    • (2006) Energy Policy , vol.34 , Issue.1 , pp. 40-49
    • Davoudpour, H.1    Ahadi, M.S.2
  • 14
    • 0003621959 scopus 로고    scopus 로고
    • Energy Information Administration (EIA). DOE/EIA-0484- Reference Case Projections, Washington, DC: EIA
    • Energy Information Administration (EIA). 2009. Annual Energy Outlook, 2009. DOE/EIA-0484- Reference Case Projections, Washington, DC: EIA.
    • (2009) Annual Energy Outlook , vol.2009
  • 15
    • 33845273062 scopus 로고    scopus 로고
    • Artificial neural network analysis of world green energy use
    • DOI 10.1016/j.enpol.2006.04.015, PII S0301421506001972
    • Ermis, K., Midilli, A., Dincer, I., and Rosen, M. A. 2007. Artificial neural network analysis of world green energy use. Energy Policy 35:1731-1743. (Pubitemid 44858147)
    • (2007) Energy Policy , vol.35 , Issue.3 , pp. 1731-1743
    • Ermis, K.1    Midilli, A.2    Dincer, I.3    Rosen, M.A.4
  • 16
    • 77956067773 scopus 로고    scopus 로고
    • International Energy Agency (IEA). Washington, DC: IEA
    • International Energy Agency (IEA). 2008. Keyword energy statistic, 2008. Washington, DC: IEA.
    • (2008) Keyword Energy Statistic , vol.2008
  • 18
    • 0036602647 scopus 로고    scopus 로고
    • Estimation and control of Spanish energy-related CO2 emissions: An input-output approach
    • Labandeira, X., and Labeaga, J. M. 2002. Estimation and control of Spanish energy-related CO2 emissions: An input-output approach. Energy Policy 30:579-611.
    • (2002) Energy Policy , vol.30 , pp. 579-611
    • Labandeira, X.1    Labeaga, J.M.2
  • 25
    • 43149117467 scopus 로고    scopus 로고
    • Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025
    • Unler, A. 2008. Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025. Energy Policy 36:1937-1944.
    • (2008) Energy Policy , vol.36 , pp. 1937-1944
    • Unler, A.1
  • 29
    • 64049096918 scopus 로고    scopus 로고
    • Pitch angle control in wind turbines above the rated wind speed by multi-layer percepteron and redial basis function neural networks
    • Yilmaz, A. S., and Ozer, Z. 2009. Pitch angle control in wind turbines above the rated wind speed by multi-layer percepteron and redial basis function neural networks. Expert Sys. Applic. 36:9767-9775.
    • (2009) Expert Sys. Applic. , vol.36 , pp. 9767-9775
    • Yilmaz, A.S.1    Ozer, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.