-
1
-
-
0031074521
-
Locally weighted learning
-
Atkeson, CG, Moore, AW, and, Schaal, S. 1997. Locally Weighted Learning. Artificial Intelligence Review, 11: 11-73. (Pubitemid 127508233)
-
(1997)
Artificial Intelligence Review
, vol.11
, Issue.1-5
, pp. 11-73
-
-
Atkeson, C.G.1
Moore, A.W.2
Schaal, S.3
-
2
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
PII S0031320396001422
-
Bradley, AP. 1997. The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30: 1145-1159. (Pubitemid 127406521)
-
(1997)
Pattern Recognition
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
3
-
-
0001019707
-
Learning bayesian networks is np-complete
-
Edited by: Fisher, D. and Lenz, H. New York: Springer Press
-
Chickering, DM. 1996. Learning Bayesian networks is NP-Complete. In Learning from Data: Artificial Intelligence and Statistics V, Edited by: Fisher, D. and Lenz, H. 121-130. New York: Springer Press.
-
(1996)
Learning from Data: Artificial Intelligence and Statistics v
, pp. 121-130
-
-
Chickering, D.M.1
-
4
-
-
24644467293
-
Locally weighted naive bayes
-
7-10 August, Acapulco, Mexico. San Francisco: Morgan Kaufmann Press
-
Frank, E., Hall, M., and Pfahringer, B. (2003), Locally Weighted Naive Bayes, in Proceedings of the Conference on Uncertainty in Artificial Intelligence, 7-10 August, Acapulco, Mexico. San Francisco: Morgan Kaufmann Press, pp. 249-256
-
(2003)
Proceedings of the Conference on Uncertainty in Artificial Intelligence
, pp. 249-256
-
-
Frank, E.1
Hall, M.2
Pfahringer, B.3
-
5
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N, Geiger, N, and, Goldszmidt, M. 1997. Bayesian Network Classifiers. Machine Learning, 29: 131-163. (Pubitemid 127510036)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
6
-
-
14344256569
-
Learning Bayesian Network classifiers by maximizing conditional likelihood
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
Grossman, D., and Domingos, P. (2004), Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood, in Proceedings of the Twenty-First International Conference on Machine Learning, 4-8 July, Banff, Canada. New York: ACM Press, pp. 361-368 (Pubitemid 40290829)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 361-368
-
-
Grossman, D.1
Domingos, P.2
-
7
-
-
0003562954
-
A simple generalisation of the area under the ROC curve for multiple class classification problems
-
DOI 10.1023/A:1010920819831
-
Hand, DJ, and, Till, RJ. 2001. A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Machine Learning, 45: 171-186. (Pubitemid 33635984)
-
(2001)
Machine Learning
, vol.45
, Issue.2
, pp. 171-186
-
-
Hand, D.J.1
Till, R.J.2
-
8
-
-
33749571155
-
Weightily averaged one-dependence estimators
-
PRICAI 2006: Trends in Artificial Intelligence - 9th Pacific Rim International Conference on Artificial Intelligence, Proceedings
-
Jiang, L. and Zhang, H. (2006) Weightily Averaged One-dependence Estimators, in Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, 7-11 August, Guilin, China. New York: Springer Press, pp. 970-974 (Pubitemid 44531893)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4099 LNAI
, pp. 970-974
-
-
Jiang, L.1
Zhang, H.2
-
9
-
-
67650705264
-
Decision tree with better class probability estimation
-
Jiang, L, Li, C, and, Cai, Z. 2009. Decision Tree with Better Class Probability Estimation. International Journal of Pattern Recognition and Artificial Intelligence, 23: 745-763.
-
(2009)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.23
, pp. 745-763
-
-
Jiang, L.1
Li, C.2
Cai, Z.3
-
10
-
-
0002610991
-
Learning augmented naive bayes classifiers
-
January, Ft. Lauderdale, FL. San Francisco: Morgan Kaufmann
-
Keogh, EJ, and, Pazzani, MJ. 1999. Learning Augmented Naive Bayes Classifiers. In in Proceedings of the Seventh International Workshop on AI and Statistics. January, Ft. Lauderdale, FL. San Francisco: Morgan Kaufmann, pp. 225-230.
-
(1999)
Proceedings of the Seventh International Workshop on AI and Statistics
, pp. 225-230
-
-
Keogh, E.J.1
Pazzani, M.J.2
-
11
-
-
85156137079
-
Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid
-
2-4 August, Portland, OR. Menlo Park, CA: AAAI Press
-
Kohavi, R. (1996), Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 2-4 August, Portland, OR. Menlo Park, CA: AAAI Press, pp. 202-207
-
(1996)
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
, pp. 202-207
-
-
Kohavi, R.1
-
12
-
-
0001901666
-
Induction of selective bayesian classifiers
-
31 July-4 August, Seattle, WA. San Francisco, CA: Morgan Kaufmann
-
Langley, P. and Sage, S. (1994), Induction of Selective Bayesian Classifiers, in Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, 31 July-4 August, Seattle, WA. San Francisco, CA: Morgan Kaufmann, pp. 339-406
-
(1994)
Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence
, pp. 339-406
-
-
Langley, P.1
Sage, S.2
-
13
-
-
0003408496
-
-
Department of ICS: University of California, Irvine
-
Merz, C, Murphy, P, and, Aha, D. 1997. UCI Repository of Machine Learning Databases, Department of ICS: University of California, Irvine. http://www.ics.uci.edu/mlearn/MLRepository.html
-
(1997)
UCI Repository of Machine Learning Databases
-
-
Merz, C.1
Murphy, P.2
Aha, D.3
-
14
-
-
0042847140
-
Inference for the generalization error
-
Nadeau, C, and, Bengio, Y. 2003. Inference for The Generalization Error. Machine Learning, 52: 239-281.
-
(2003)
Machine Learning
, vol.52
, pp. 239-281
-
-
Nadeau, C.1
Bengio, Y.2
-
16
-
-
85010067887
-
Learning limited dependence bayesian classifiers
-
2-4 August, Portland, OR. Menlo Park, CA: AAAI Press
-
Sahami, M. (1996), Learning Limited Dependence Bayesian Classifiers, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 2-4 August, Portland, OR. Menlo Park, CA: AAAI Press, pp. 335-338
-
(1996)
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
, pp. 335-338
-
-
Sahami, M.1
-
17
-
-
14844351034
-
Not so naive Bayes: Aggregating one-dependence estimators
-
DOI 10.1007/s10994-005-4258-6
-
Webb, GI, Boughton, J, and, Wang, Z. 2005. Not so Naive Bayes: Aggregating One-dependence Estimators. Machine Learning, 58: 5-24. (Pubitemid 40356736)
-
(2005)
Machine Learning
, vol.58
, Issue.1
, pp. 5-24
-
-
Webb, G.I.1
Boughton, J.R.2
Wang, Z.3
-
19
-
-
0034301677
-
Lazy learning of bayesian rules
-
Zheng, Z, and, Webb, GI. 2000. Lazy Learning of Bayesian Rules. Machine Learning, 41: 53-84.
-
(2000)
Machine Learning
, vol.41
, pp. 53-84
-
-
Zheng, Z.1
Webb, G.I.2
|