메뉴 건너뛰기




Volumn 24, Issue 2, 2012, Pages 219-230

Weighted average of one-dependence estimators

Author keywords

attribute weighting; averaged one dependence estimators; classification; data mining; naive Bayes

Indexed keywords

ATTRIBUTE INDEPENDENCE ASSUMPTION; ATTRIBUTE WEIGHTING; AVERAGED ONE-DEPENDENCE ESTIMATORS; CLASSIFICATION ACCURACY; CLASSIFICATION MODELS; CONFERENCE PAPERS; DATA SETS; EXTENDED VERSIONS; IMPROVED MODELS; NAIVE BAYES; REAL WORLD DATA; WEIGHTED AVERAGES; WEIGHTING APPROACHES;

EID: 84859178211     PISSN: 0952813X     EISSN: 13623079     Source Type: Journal    
DOI: 10.1080/0952813X.2011.639092     Document Type: Article
Times cited : (78)

References (19)
  • 2
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • PII S0031320396001422
    • Bradley, AP. 1997. The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30: 1145-1159. (Pubitemid 127406521)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 3
    • 0001019707 scopus 로고    scopus 로고
    • Learning bayesian networks is np-complete
    • Edited by: Fisher, D. and Lenz, H. New York: Springer Press
    • Chickering, DM. 1996. Learning Bayesian networks is NP-Complete. In Learning from Data: Artificial Intelligence and Statistics V, Edited by: Fisher, D. and Lenz, H. 121-130. New York: Springer Press.
    • (1996) Learning from Data: Artificial Intelligence and Statistics v , pp. 121-130
    • Chickering, D.M.1
  • 5
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • Friedman, N, Geiger, N, and, Goldszmidt, M. 1997. Bayesian Network Classifiers. Machine Learning, 29: 131-163. (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 6
    • 14344256569 scopus 로고    scopus 로고
    • Learning Bayesian Network classifiers by maximizing conditional likelihood
    • Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
    • Grossman, D., and Domingos, P. (2004), Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood, in Proceedings of the Twenty-First International Conference on Machine Learning, 4-8 July, Banff, Canada. New York: ACM Press, pp. 361-368 (Pubitemid 40290829)
    • (2004) Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004 , pp. 361-368
    • Grossman, D.1    Domingos, P.2
  • 7
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • DOI 10.1023/A:1010920819831
    • Hand, DJ, and, Till, RJ. 2001. A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Machine Learning, 45: 171-186. (Pubitemid 33635984)
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 11
    • 85156137079 scopus 로고    scopus 로고
    • Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid
    • 2-4 August, Portland, OR. Menlo Park, CA: AAAI Press
    • Kohavi, R. (1996), Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 2-4 August, Portland, OR. Menlo Park, CA: AAAI Press, pp. 202-207
    • (1996) Proceedings of the Second International Conference on Knowledge Discovery and Data Mining , pp. 202-207
    • Kohavi, R.1
  • 14
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau, C, and, Bengio, Y. 2003. Inference for The Generalization Error. Machine Learning, 52: 239-281.
    • (2003) Machine Learning , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 17
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: Aggregating one-dependence estimators
    • DOI 10.1007/s10994-005-4258-6
    • Webb, GI, Boughton, J, and, Wang, Z. 2005. Not so Naive Bayes: Aggregating One-dependence Estimators. Machine Learning, 58: 5-24. (Pubitemid 40356736)
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.R.2    Wang, Z.3
  • 19
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of bayesian rules
    • Zheng, Z, and, Webb, GI. 2000. Lazy Learning of Bayesian Rules. Machine Learning, 41: 53-84.
    • (2000) Machine Learning , vol.41 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.