메뉴 건너뛰기




Volumn 33, Issue 4, 2012, Pages 374-396

On convergence properties for a class of Kantorovich discrete operators

Author keywords

Discrete operators; K functionals; Modulus of continuity; Moments; Voronovskaja formula

Indexed keywords

DISCRETE OPERATORS; K-FUNCTIONALS; MODULUS OF CONTINUITY; MOMENTS; VORONOVSKAJA FORMULA;

EID: 84859169963     PISSN: 01630563     EISSN: 15322467     Source Type: Journal    
DOI: 10.1080/01630563.2011.652270     Document Type: Article
Times cited : (51)

References (23)
  • 3
    • 78049281071 scopus 로고    scopus 로고
    • A quantitative voronovskaja formula for generalized sampling operators
    • C. Bardaro and I. Mantellini (2009). A quantitative Voronovskaja formula for generalized sampling operators. East J. Approx. 15:459-471.
    • (2009) East J. Approx. , vol.15 , pp. 459-471
    • Bardaro, C.1    Mantellini, I.2
  • 4
    • 72549095550 scopus 로고    scopus 로고
    • A voronovskaja-type theorem for a general class of discrete operators
    • C. Bardaro and I. Mantellini (2009). A Voronovskaja-type theorem for a general class of discrete operators. Rocky Mountain J. Math. 39:1411-1442.
    • (2009) Rocky Mountain J. Math. , vol.39 , pp. 1411-1442
    • Bardaro, C.1    Mantellini, I.2
  • 5
    • 78649765614 scopus 로고    scopus 로고
    • Voronovskaja formulae for kantorovich type generalized sampling series
    • C. Bardaro and I. Mantellini (2010). Voronovskaja formulae for Kantorovich type generalized sampling series. Int. J. Pure Appl. Math. 62:247-262.
    • (2010) Int. J. Pure Appl. Math. , vol.62 , pp. 247-262
    • Bardaro, C.1    Mantellini, I.2
  • 6
    • 78049263887 scopus 로고    scopus 로고
    • A quantitative asymptotic formula for a general class of discrete operators
    • C. Bardaro and I. Mantellini (2010). A quantitative asymptotic formula for a general class of discrete operators. Comp. Math. Appl. 60:2859-2870.
    • (2010) Comp. Math. Appl. , vol.60 , pp. 2859-2870
    • Bardaro, C.1    Mantellini, I.2
  • 8
    • 0001342115 scopus 로고
    • Global approximation theorems for szász-mirakjan and baskakov operators in polynomial weight spaces
    • M. Beker (1978). Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces. Indiana Univ. Math. J. 27:127-141.
    • (1978) Indiana Univ. Math. J. , vol.27 , pp. 127-141
    • Beker, M.1
  • 9
    • 0026838009 scopus 로고
    • Sampling theory for not necessarily band-limited functions: An historical overview
    • P. L. Butzer and R. L. Stens (1992). Sampling theory for not necessarily band-limited functions: an historical overview. SIAM Rev. 34:40-53.
    • (1992) SIAM Rev. , vol.34 , pp. 40-53
    • Butzer, P.L.1    Stens, R.L.2
  • 10
    • 27844557036 scopus 로고
    • Linear prediction by samples from the past
    • (R. J. Marks II ed.). Springer Texts Electrical Engineering, Springer, New York
    • P. L. Butzer and R. L. Stens (1993). Linear prediction by samples from the past. In Advanced Topics in Shannon Sampling and Interpolation Theory (R. J. Marks II ed.). Springer Texts Electrical Engineering, Springer, New York, pp. 157-183.
    • (1993) Advanced Topics in Shannon Sampling and Interpolation Theory , pp. 157-183
    • Butzer, P.L.1    Stens, R.L.2
  • 14
  • 15
    • 0000401014 scopus 로고
    • The K -functional for symmetric spaces
    • Springer, Berlin
    • L. Maligranda (1984). The K -Functional for Symmetric Spaces. Lecture Notes in Math. 1070, Springer, Berlin, pp.169-182.
    • (1984) Lecture Notes in Math. , vol.1070 , pp. 169-182
    • Maligranda, L.1
  • 16
    • 17444431919 scopus 로고    scopus 로고
    • Asymptotic expansion of multivariate kantorovich type operators
    • A.-J. Lopez-Moreno and F.-J. Munoz-Delgado (2005). Asymptotic expansion of multivariate Kantorovich type operators. Numerical Algorithms 39:237-252.
    • (2005) Numerical Algorithms , vol.39 , pp. 237-252
    • Lopez-Moreno, A.-J.1    Munoz-Delgado, F.-J.2
  • 17
    • 0003707239 scopus 로고
    • University of Toronto Press, Toronto 2nd ed., Chelsea Publishing Co., New York
    • G. G. Lorentz (1986). Bernstein Polynomials. University of Toronto Press, Toronto. (1953, 2nd ed., Chelsea Publishing Co., New York).
    • (1953) Bernstein Polynomials
    • Lorentz, G.G.1
  • 19
    • 0008338884 scopus 로고
    • Exact interpolation theorems for lipschitz continuous functions
    • J. Peetre (1969). Exact interpolation theorems for Lipschitz continuous functions. Ricerche Mat. 18:239-259.
    • (1969) Ricerche Mat. , vol.18 , pp. 239-259
    • Peetre, J.1
  • 20
    • 0010797227 scopus 로고
    • Approximation by generalized sampling series
    • (Bl. Sendov, P. Petrushev, R. Maalev, and S. Tashev, eds.). Pugl. House Bulgarian Academy of Sciences, Sofia
    • S. Ries and R. L. Stens (1984). Approximation by generalized sampling series. In Constructive Theory of Functions (Bl. Sendov, P. Petrushev, R. Maalev, and S. Tashev, eds.). Pugl. House Bulgarian Academy of Sciences, Sofia, pp. 746-756.
    • (1984) Constructive Theory of Functions , pp. 746-756
    • Ries, S.1    Stens, L.R.2
  • 21
    • 84972567853 scopus 로고
    • An interpolation theorem and its applications to positive operators
    • V. Totik (1984). An interpolation theorem and its applications to positive operators. Pacific J. Math. 111(2):447-481.
    • (1984) Pacific J. Math. , vol.111 , Issue.2 , pp. 447-481
    • Totik, V.1
  • 23
    • 70449519405 scopus 로고    scopus 로고
    • Approximation by means of nonlinear kantorovich sampling type operators in orlicz spaces
    • G. Vinti and L. Zampogni (2009). Approximation by means of nonlinear Kantorovich sampling type operators in Orlicz spaces. J. Approx. Theory 161:511-528.
    • (2009) J. Approx. Theory , vol.161 , pp. 511-528
    • Vinti, G.1    Zampogni, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.