-
3
-
-
78049281071
-
A quantitative voronovskaja formula for generalized sampling operators
-
C. Bardaro and I. Mantellini (2009). A quantitative Voronovskaja formula for generalized sampling operators. East J. Approx. 15:459-471.
-
(2009)
East J. Approx.
, vol.15
, pp. 459-471
-
-
Bardaro, C.1
Mantellini, I.2
-
4
-
-
72549095550
-
A voronovskaja-type theorem for a general class of discrete operators
-
C. Bardaro and I. Mantellini (2009). A Voronovskaja-type theorem for a general class of discrete operators. Rocky Mountain J. Math. 39:1411-1442.
-
(2009)
Rocky Mountain J. Math.
, vol.39
, pp. 1411-1442
-
-
Bardaro, C.1
Mantellini, I.2
-
5
-
-
78649765614
-
Voronovskaja formulae for kantorovich type generalized sampling series
-
C. Bardaro and I. Mantellini (2010). Voronovskaja formulae for Kantorovich type generalized sampling series. Int. J. Pure Appl. Math. 62:247-262.
-
(2010)
Int. J. Pure Appl. Math.
, vol.62
, pp. 247-262
-
-
Bardaro, C.1
Mantellini, I.2
-
6
-
-
78049263887
-
A quantitative asymptotic formula for a general class of discrete operators
-
C. Bardaro and I. Mantellini (2010). A quantitative asymptotic formula for a general class of discrete operators. Comp. Math. Appl. 60:2859-2870.
-
(2010)
Comp. Math. Appl.
, vol.60
, pp. 2859-2870
-
-
Bardaro, C.1
Mantellini, I.2
-
8
-
-
0001342115
-
Global approximation theorems for szász-mirakjan and baskakov operators in polynomial weight spaces
-
M. Beker (1978). Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces. Indiana Univ. Math. J. 27:127-141.
-
(1978)
Indiana Univ. Math. J.
, vol.27
, pp. 127-141
-
-
Beker, M.1
-
9
-
-
0026838009
-
Sampling theory for not necessarily band-limited functions: An historical overview
-
P. L. Butzer and R. L. Stens (1992). Sampling theory for not necessarily band-limited functions: an historical overview. SIAM Rev. 34:40-53.
-
(1992)
SIAM Rev.
, vol.34
, pp. 40-53
-
-
Butzer, P.L.1
Stens, R.L.2
-
10
-
-
27844557036
-
Linear prediction by samples from the past
-
(R. J. Marks II ed.). Springer Texts Electrical Engineering, Springer, New York
-
P. L. Butzer and R. L. Stens (1993). Linear prediction by samples from the past. In Advanced Topics in Shannon Sampling and Interpolation Theory (R. J. Marks II ed.). Springer Texts Electrical Engineering, Springer, New York, pp. 157-183.
-
(1993)
Advanced Topics in Shannon Sampling and Interpolation Theory
, pp. 157-183
-
-
Butzer, P.L.1
Stens, R.L.2
-
14
-
-
63649137733
-
On peano's form of the taylor remainder, voronovskaja's theorem and the commutator of positive linear operators
-
Cluj Napoca, Romania, July 5-8
-
H. Gonska, P. Pitul, and I. Rasa (2006). On Peano's form of the Taylor remainder, Voronovskaja's theorem and the commutator of positive linear operators. In Proceedings of the International Conference on Numerical Analysis and Approximation Theory. Cluj Napoca, Romania, July 5-8, pp. 55-80.
-
(2006)
Proceedings of the International Conference on Numerical Analysis and Approximation Theory
, pp. 55-80
-
-
Gonska, H.1
Pitul, P.2
Rasa, I.3
-
15
-
-
0000401014
-
The K -functional for symmetric spaces
-
Springer, Berlin
-
L. Maligranda (1984). The K -Functional for Symmetric Spaces. Lecture Notes in Math. 1070, Springer, Berlin, pp.169-182.
-
(1984)
Lecture Notes in Math.
, vol.1070
, pp. 169-182
-
-
Maligranda, L.1
-
16
-
-
17444431919
-
Asymptotic expansion of multivariate kantorovich type operators
-
A.-J. Lopez-Moreno and F.-J. Munoz-Delgado (2005). Asymptotic expansion of multivariate Kantorovich type operators. Numerical Algorithms 39:237-252.
-
(2005)
Numerical Algorithms
, vol.39
, pp. 237-252
-
-
Lopez-Moreno, A.-J.1
Munoz-Delgado, F.-J.2
-
17
-
-
0003707239
-
-
University of Toronto Press, Toronto 2nd ed., Chelsea Publishing Co., New York
-
G. G. Lorentz (1986). Bernstein Polynomials. University of Toronto Press, Toronto. (1953, 2nd ed., Chelsea Publishing Co., New York).
-
(1953)
Bernstein Polynomials
-
-
Lorentz, G.G.1
-
19
-
-
0008338884
-
Exact interpolation theorems for lipschitz continuous functions
-
J. Peetre (1969). Exact interpolation theorems for Lipschitz continuous functions. Ricerche Mat. 18:239-259.
-
(1969)
Ricerche Mat.
, vol.18
, pp. 239-259
-
-
Peetre, J.1
-
20
-
-
0010797227
-
Approximation by generalized sampling series
-
(Bl. Sendov, P. Petrushev, R. Maalev, and S. Tashev, eds.). Pugl. House Bulgarian Academy of Sciences, Sofia
-
S. Ries and R. L. Stens (1984). Approximation by generalized sampling series. In Constructive Theory of Functions (Bl. Sendov, P. Petrushev, R. Maalev, and S. Tashev, eds.). Pugl. House Bulgarian Academy of Sciences, Sofia, pp. 746-756.
-
(1984)
Constructive Theory of Functions
, pp. 746-756
-
-
Ries, S.1
Stens, L.R.2
-
21
-
-
84972567853
-
An interpolation theorem and its applications to positive operators
-
V. Totik (1984). An interpolation theorem and its applications to positive operators. Pacific J. Math. 111(2):447-481.
-
(1984)
Pacific J. Math.
, vol.111
, Issue.2
, pp. 447-481
-
-
Totik, V.1
-
23
-
-
70449519405
-
Approximation by means of nonlinear kantorovich sampling type operators in orlicz spaces
-
G. Vinti and L. Zampogni (2009). Approximation by means of nonlinear Kantorovich sampling type operators in Orlicz spaces. J. Approx. Theory 161:511-528.
-
(2009)
J. Approx. Theory
, vol.161
, pp. 511-528
-
-
Vinti, G.1
Zampogni, L.2
|