메뉴 건너뛰기




Volumn 32, Issue 7, 2011, Pages 717-738

Kantorovich operators of order k

Author keywords

Bernstein operators; Degree of approximation; First and second order moduli of continuity; Kantorovich operators (of higher order); Positive linear operators; Simultaneous approximation; Voronovskaya's theorem

Indexed keywords

BERNSTEIN OPERATOR; DEGREE OF APPROXIMATION; FIRST AND SECOND ORDER MODULI OF CONTINUITY; KANTOROVICH OPERATORS (OF HIGHER ORDER); POSITIVE LINEAR OPERATORS; SIMULTANEOUS APPROXIMATION; VORONOVSKAYA'S THEOREM;

EID: 79957610577     PISSN: 01630563     EISSN: 15322467     Source Type: Journal    
DOI: 10.1080/01630563.2011.580877     Document Type: Article
Times cited : (43)

References (25)
  • 2
    • 79957587697 scopus 로고
    • On a method for approximation of bounded functions given on an interval
    • Baku, in Russian
    • Yu.A. Brudnyj (1955). On a method for approximation of bounded functions given on an interval. Issled. Sovrem. Probl. Konstr. Teor. Funkts., Baku 40-45. (in Russian)
    • (1955) Issled. Sovrem. Probl. Konstr. Teor. Funkts. , pp. 40-45
    • Brudnyj, Yu.A.1
  • 3
    • 79957612057 scopus 로고
    • Summability of generalized Bernstein polynomials
    • P.L. Butzer (1955). Summability of generalized Bernstein polynomials. I. Duke Math. J. 22:617-623.
    • (1955) I. Duke Math. J. , vol.22 , pp. 617-623
    • Butzer, P.L.1
  • 4
    • 8344281746 scopus 로고    scopus 로고
    • Binomial-type coeffcients and classical approximation processes
    • G. Anastassiou, Ed., Boca Raton, FL: Chapman & Hall
    • M. Campiti (2000). Binomial-type coeffcients and classical approximation processes. In: Handbook of Analytic - Computational Methods in Applied Mathematics (G. Anastassiou, Ed.). Boca Raton, FL: Chapman & Hall, pp. 947-996.
    • (2000) Handbook of Analytic - Computational Methods in Applied Mathematics , pp. 947-996
    • Campiti, M.1
  • 5
    • 79957619315 scopus 로고
    • On approximation by positive linear methods. I, II
    • 3:365-370 (1968)
    • G. Freud (1967). On approximation by positive linear methods. I, II. Stud. Sci. Math. Hung. 2:63-66. [3:365-370 (1968)]
    • (1967) Stud. Sci. Math. Hung. , vol.2 , pp. 63-66
    • Freud, G.1
  • 6
    • 17844389391 scopus 로고    scopus 로고
    • On the convergence of derivatives of Bernstein approximation
    • DOI 10.1016/j.jat.2004.02.009, PII S0021904505000523
    • M. Floater (2005). On the convergence of derivatives of Bernstein approximation. J. Approx. Theory 134:130-135. (Pubitemid 40595452)
    • (2005) Journal of Approximation Theory , vol.134 , Issue.1 , pp. 130-135
    • Floater, M.S.1
  • 8
    • 0040277017 scopus 로고
    • Quantitative Korovkin-type theorems on simultaneous approximation
    • H.H. Gonska (1984). Quantitative Korovkin-type theorems on simultaneous approximation. Math. Z. 186:419-433.
    • (1984) Math. Z. , vol.186 , pp. 419-433
    • Gonska, H.H.1
  • 9
    • 79957623448 scopus 로고    scopus 로고
    • Asymptotic behaviour of differentiated Bernstein polynomials revisited
    • H. Gonska, M. Heilmann, and I. Ra̧sa (2010). Asymptotic behaviour of differentiated Bernstein polynomials revisited. General Mathematics (Sibiu) 18:45-53.
    • (2010) General Mathematics (Sibiu) , vol.18 , pp. 45-53
    • Gonska, H.1    Heilmann, M.2    Ra̧sa, I.3
  • 10
    • 77952056617 scopus 로고    scopus 로고
    • General Voronovskaya and asymptotic theorems in simultaneous approximation
    • H. Gonska and R. P̌alťanea (2010). General Voronovskaya and asymptotic theorems in simultaneous approximation. Mediterr. J. Math. 7:37-49.
    • (2010) Mediterr. J. Math. , vol.7 , pp. 37-49
    • Gonska, H.1    P̌alťanea, R.2
  • 11
    • 82255196851 scopus 로고    scopus 로고
    • A Voronovskaya estimate with second order modulus of smoothness
    • D. Acu et al., Eds., Publishing House of "Lucian Blaga" University, Sibu
    • H. Gonska and I. Ra̧sa (2009). A Voronovskaya estimate with second order modulus of smoothness. In: Mathematical Inequalities (Proceedings of the 5th International Symposium, Sibiu 2008) (D. Acu et al., Eds.). Publishing House of "Lucian Blaga" University, Sibu, pp. 76-90.
    • (2009) Mathematical Inequalities (Proceedings of the 5th International Symposium Sibiu 2008) , pp. 76-90
    • Gonska, H.1    Ra̧sa, I.2
  • 12
    • 63649148534 scopus 로고    scopus 로고
    • Asymptotic behaviour of differentiated Bernstein polynomials
    • H. Gonska and I. Ra̧sa (2009). Asymptotic behaviour of differentiated Bernstein polynomials. Mat. Vesnik 61:53-60.
    • (2009) Mat. Vesnik , vol.61 , pp. 53-60
    • Gonska, H.1    Ra̧sa, I.2
  • 15
    • 77954520115 scopus 로고
    • Sur certains developpements suivant les polynomes de la forme de S. Bernstein. I, II
    • L.V. Kantorovich (1930). Sur certains developpements suivant les polynomes de la forme de S. Bernstein. I, II. C. R. Acad. Sci. USSR A 563-568:595-600.
    • (1930) C. R. Acad. Sci. USSR A , vol.563-568 , pp. 595-600
    • Kantorovich, L.V.1
  • 16
    • 84972538749 scopus 로고
    • Iterates of Bernstein polynomials
    • R.P. Kelisky and T.J. Rivlin (1967). Iterates of Bernstein polynomials. Pacific J. Math. 21(3): 511-520.
    • (1967) Pacific J. Math. , vol.21 , Issue.3 , pp. 511-520
    • Kelisky, R.P.1    Rivlin, T.J.2
  • 17
    • 0010899026 scopus 로고
    • Ein Satz vom Korovkin-Typ fur Ck-Raume
    • H.-B. Knoop and P. Pottinger (1976). Ein Satz vom Korovkin-Typ fur Ck-Raume. Math. Z. 148:23-32.
    • (1976) Math. Z. , vol.148 , pp. 23-32
    • Knoop, H.-B.1    Pottinger, P.2
  • 20
    • 0002518911 scopus 로고
    • Kantorovich operators of second order
    • J. Nagel (1983). Kantorovich operators of second order. Monatsh. Math. 95:33-44.
    • (1983) Monatsh. Math. , vol.95 , pp. 33-44
    • Nagel, J.1
  • 21
    • 3543068113 scopus 로고    scopus 로고
    • Optimal constant in approximation by Bernstein operators
    • DOI 10.1023/A:1022898728718
    • R. P̌alťanea (2003). Optimal constant in approximation by Bernstein operators. J. Comput. Anal. Appl. 5:195-235. (Pubitemid 36370573)
    • (2003) J. Comput. Anal. Appl. , vol.5 , Issue.2 , pp. 195-235
    • Paltanea, R.1
  • 24
    • 79957614973 scopus 로고
    • The convergence of the derivatives of positive linear operators
    • in Russian
    • Bl. Sendov, and V. Popov (1969). The convergence of the derivatives of positive linear operators. C. R. Acad. Bulgare Sci. 22:507-509. (in Russian)
    • (1969) C. R. Acad. Bulgare Sci. , vol.22 , pp. 507-509
    • Sendov, Bl.1    Popov, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.