메뉴 건너뛰기




Volumn 60, Issue 10, 2010, Pages 2859-2870

A quantitative asymptotic formula for a general class of discrete operators

Author keywords

Discrete operators; Moments; Peetre K functional; Voronovskaja type formula

Indexed keywords

ASYMPTOTIC FORMULA; DISCRETE OPERATORS; GENERAL CLASS; JACKSON; K-FUNCTIONAL; MOMENTS; VORONOVSKAJA TYPE FORMULA;

EID: 78049263887     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2010.09.043     Document Type: Article
Times cited : (9)

References (29)
  • 1
    • 72549095550 scopus 로고    scopus 로고
    • A Voronovskaya-type theorem for a general class of discrete operators
    • C. Bardaro, and I. Mantellini A Voronovskaya-type theorem for a general class of discrete operators Rocky Mountain J. Math. 39 5 2009 1411 1442
    • (2009) Rocky Mountain J. Math. , vol.39 , Issue.5 , pp. 1411-1442
    • Bardaro, C.1    Mantellini, I.2
  • 4
    • 0001342115 scopus 로고
    • Global approximation theorems for SzszMirakjan and Baskakov operators in polynomial weight spaces
    • M. Beker Global approximation theorems for SzszMirakjan and Baskakov operators in polynomial weight spaces Indiana Univ. Math. J. 27 1 1978 127 141
    • (1978) Indiana Univ. Math. J. , vol.27 , Issue.1 , pp. 127-141
    • Beker, M.1
  • 5
    • 29244466248 scopus 로고
    • The Voronovskaya theorem for some operators of the SzszMirakian type
    • L. Rempulska, and M. Skorupka The Voronovskaya theorem for some operators of the SzszMirakian type Le Matematiche 50 2 1995 251 261
    • (1995) Le Matematiche , vol.50 , Issue.2 , pp. 251-261
    • Rempulska, L.1    Skorupka, M.2
  • 6
    • 2442546243 scopus 로고    scopus 로고
    • Approximation properties of certain modified SzaszMirakyan operators
    • L. Rempulska, and Z. Walczak Approximation properties of certain modified SzaszMirakyan operators Le Matematiche 55 1 2000 121 132
    • (2000) Le Matematiche , vol.55 , Issue.1 , pp. 121-132
    • Rempulska, L.1    Walczak, Z.2
  • 7
    • 0037407043 scopus 로고    scopus 로고
    • Positive linear operators which preserve x2
    • J.P. King Positive linear operators which preserve x 2. Acta Math. Hungar. 99 3 2003 203 208
    • (2003) Acta Math. Hungar. , vol.99 , Issue.3 , pp. 203-208
    • King, J.P.1
  • 9
    • 70350676526 scopus 로고    scopus 로고
    • General king-type operators
    • H. Gonska, P. Pitul, and I. Rasa General king-type operators Results Math. 53 34 2009 279 286
    • (2009) Results Math. , vol.53 , Issue.34 , pp. 279-286
    • Gonska, H.1    Pitul, P.2    Rasa, I.3
  • 10
    • 75449089151 scopus 로고    scopus 로고
    • Voronovskaya-type theorems for derivatives of the BernsteinChlodovsky polynomials and the SzszMirakyan operator
    • P.L. Butzer, and H. Karsli Voronovskaya-type theorems for derivatives of the BernsteinChlodovsky polynomials and the SzszMirakyan operator Comment. Math. 49 1 2009 33 58
    • (2009) Comment. Math. , vol.49 , Issue.1 , pp. 33-58
    • Butzer, P.L.1    Karsli, H.2
  • 12
    • 0010797227 scopus 로고
    • Approximation by generalized sampling series
    • S. Ries, and R.L. Stens Approximation by generalized sampling series Bl. Sendov, P. Petrushev, R. Maalev, S. Tashev, Constructive Theory of Functions 1984 Pugl. House Bulgarian Academy of Sciences Sofia 746 756
    • (1984) Constructive Theory of Functions , pp. 746-756
    • Ries, S.1    Stens, R.L.2
  • 15
    • 63649137733 scopus 로고    scopus 로고
    • On Peano's form of the Taylor remainder, Voronovskaja's theorem and the commutator of positive linear operators
    • Cluj Napoca, Romania July 5-8
    • H. Gonska, P. Pitul, I. Rasa, On Peano's form of the Taylor remainder, Voronovskaja's theorem and the commutator of positive linear operators, in: Proc. Int. Conf. on Numerical Analysis and Approximation Theory, Cluj Napoca, Romania July 58 2006, pp. 5580.
    • (2006) Proc. Int. Conf. on Numerical Analysis and Approximation Theory , pp. 55-80
    • Gonska, H.1    Pitul, P.2    Rasa, I.3
  • 16
    • 0003028788 scopus 로고
    • A theory of interpolation of normed spaces
    • Lecture Notes, Brasilia, 1963
    • J. Peetre A theory of interpolation of normed spaces Lecture Notes, Brasilia, 1963 Notas de Matematica vol. 39 1968
    • (1968) Notas de Matematica , vol.39
    • Peetre, J.1
  • 17
    • 0008338884 scopus 로고
    • Exact interpolation theorems for Lipschitz continuous functions
    • J. Peetre Exact interpolation theorems for Lipschitz continuous functions Ric. Mat. 18 1969 239 259
    • (1969) Ric. Mat. , vol.18 , pp. 239-259
    • Peetre, J.1
  • 18
    • 0000401014 scopus 로고
    • The K-functional for symmetric spaces
    • L. Maligranda The K-functional for symmetric spaces Lecture Notes in Math. vol. 1070 1984 169 182
    • (1984) Lecture Notes in Math. , vol.1070 , pp. 169-182
    • Maligranda, L.1
  • 19
    • 77951114229 scopus 로고
    • Interpolation spaces in the theory of approximation
    • Dec. 1620, Methods of Functional Analysis in Approximation Theory, ISNM, Birkuser
    • L. Maligranda Interpolation spaces in the theory of approximation Methods of Functional Analysis in Approximation Theory, Proc. Int. Conf. Bombay, Dec. 1620, 1985 ISNM vol. 76 1986 Birkuser 263 279
    • (1985) Proc. Int. Conf. Bombay , vol.76 , pp. 263-279
    • Maligranda, L.1
  • 22
    • 35348949021 scopus 로고    scopus 로고
    • SzszMirakian type operators providing a better error estimation
    • O. Duman, and M. Ali Ozarslan SzszMirakian type operators providing a better error estimation Appl. Math. Lett. 20 2007 1184 1188
    • (2007) Appl. Math. Lett. , vol.20 , pp. 1184-1188
    • Duman, O.1    Ali Ozarslan, M.2
  • 23
    • 33749557869 scopus 로고    scopus 로고
    • Linear operators that preserve some test functions
    • O. Agratini Linear operators that preserve some test functions Int. J. Math. Math. Sci. 2006 1 11 Article ID 94136
    • (2006) Int. J. Math. Math. Sci. , pp. 1-11
    • Agratini, O.1
  • 26
    • 70350243714 scopus 로고
    • Lack of interpolation of linear operators in spaces of smooth functions
    • B.S. Mitjagin, and E.M. Semenov Lack of interpolation of linear operators in spaces of smooth functions Math. USSR. Izv. 11 6 1977 1229 1266
    • (1977) Math. USSR. Izv. , vol.11 , Issue.6 , pp. 1229-1266
    • Mitjagin, B.S.1    Semenov, E.M.2
  • 27
    • 4243500439 scopus 로고
    • Generalization of S. Bernstein's polynomials to the infinite interval
    • O. Szasz Generalization of S. Bernstein's polynomials to the infinite interval J. Res. Natl. Bur. Stand. 45 1950 239 245
    • (1950) J. Res. Natl. Bur. Stand. , vol.45 , pp. 239-245
    • Szasz, O.1
  • 28
    • 78049281071 scopus 로고    scopus 로고
    • A quantitative Voronovskaja formula for generalized sampling operators
    • C. Bardaro, and I. Mantellini A quantitative Voronovskaja formula for generalized sampling operators East J. Approx. 15 4 2009 459 471
    • (2009) East J. Approx. , vol.15 , Issue.4 , pp. 459-471
    • Bardaro, C.1    Mantellini, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.