메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 610-619

Global learning of typed entailment rules

Author keywords

[No Author keywords available]

Indexed keywords

GLOBAL LEARNING; KNOWLEDGE BASIS; LARGE DATA; LEARNING PROBLEM; SCALING METHOD; SEMANTIC INFERENCE;

EID: 84859043926     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (108)

References (32)
  • 5
    • 80053349675 scopus 로고    scopus 로고
    • LEDIR: An unsupervised algorithm for learning directionality of inference rules
    • Rahul Bhagat, Patrick Pantel, and Eduard Hovy. 2007. LEDIR: An unsupervised algorithm for learning directionality of inference rules. In Proceedings of EMNLP-CoNLL.
    • (2007) Proceedings of EMNLP-CoNLL
    • Bhagat, R.1    Pantel, P.2    Hovy, E.3
  • 6
    • 44449150380 scopus 로고    scopus 로고
    • Global inference for sentence compression: An integer linear programming approach
    • James Clarke and Mirella Lapata. 2008. Global inference for sentence compression: An integer linear programming approach. Journal of Artificial Intelligence Research, 31:273-381.
    • (2008) Journal of Artificial Intelligence Research , vol.31 , pp. 273-381
    • Clarke, J.1    Lapata, M.2
  • 7
    • 70449462156 scopus 로고    scopus 로고
    • Recognizing textual entailment: Rational, evaluation and approaches
    • Ido Dagan, Bill Dolan, Bernardo Magnini, and Dan Roth. 2009. Recognizing textual entailment: Rational, evaluation and approaches. Natural Language Engineering, 15(4):1-17.
    • (2009) Natural Language Engineering , vol.15 , Issue.4 , pp. 1-17
    • Dagan, I.1    Dolan, B.2    Magnini, B.3    Roth, D.4
  • 8
    • 80053221116 scopus 로고    scopus 로고
    • Constraints based taxonomic relation classification
    • Quang Do and Dan Roth. 2010. Constraints based taxonomic relation classification. In Proceedings of EMNLP.
    • (2010) Proceedings of EMNLP
    • Do, Q.1    Roth, D.2
  • 12
    • 0012990385 scopus 로고
    • Automatic acquisition of hyponyms from large text corpora
    • Marti Hearst. 1992. Automatic acquisition of hyponyms from large text corpora. In Proceedings of COLING
    • (1992) Proceedings of COLING
    • Hearst, M.1
  • 13
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • Thorsten Joachims. 2005. A support vector method for multivariate performance measures. In Proceedings of ICML.
    • (2005) Proceedings of ICML
    • Joachims, T.1
  • 15
    • 84992162860 scopus 로고    scopus 로고
    • Discovery of inference rules for question answering
    • Dekang Lin and Patrick Pantel. 2001. Discovery of inference rules for question answering. Natural Language Engineering, 7(4):343-360.
    • (2001) Natural Language Engineering , vol.7 , Issue.4 , pp. 343-360
    • Lin, D.1    Pantel, P.2
  • 18
    • 84859887629 scopus 로고    scopus 로고
    • Concise integer linear programming formulations for dependency parsing
    • Andre Martins, Noah Smith, and Eric Xing. 2009. Concise integer linear programming formulations for dependency parsing. In Proceedings of ACL.
    • (2009) Proceedings of ACL
    • Martins, A.1    Smith, N.2    Xing, E.3
  • 20
    • 47349102423 scopus 로고    scopus 로고
    • Classification of imbalanced data with random sets and mean-variance filtering
    • Vladimir Nikulin. 2008. Classification of imbalanced data with random sets and mean-variance filtering. IJDWM, 4(2):63-78.
    • (2008) IJDWM , vol.4 , Issue.2 , pp. 63-78
    • Nikulin, V.1
  • 21
    • 80053230681 scopus 로고    scopus 로고
    • Unsupervised ontology induction from text
    • Hoifung Poon and Pedro Domingos. 2010. Unsupervised ontology induction from text. In Proceedings of ACL.
    • (2010) Proceedings of ACL
    • Poon, H.1    Domingos, P.2
  • 22
    • 80053349723 scopus 로고    scopus 로고
    • Incremental integer linear programming for non-projective dependency parsing
    • Sebastian Riedel and James Clarke. 2006. Incremental integer linear programming for non-projective dependency parsing. In Proceedings of EMNLP.
    • (2006) Proceedings of EMNLP
    • Riedel, S.1    Clarke, J.2
  • 24
    • 38349038927 scopus 로고    scopus 로고
    • Automatic paraphrase discovery based on context and keywords between ne pairs
    • Satoshi Sekine. 2005. Automatic paraphrase discovery based on context and keywords between ne pairs. In Proceedings of IWP.
    • (2005) Proceedings of IWP
    • Sekine, S.1
  • 25
    • 51449115991 scopus 로고    scopus 로고
    • Semantic taxonomy induction from heterogenous evidence
    • Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2006. Semantic taxonomy induction from heterogenous evidence. In Proceedings of ACL.
    • (2006) Proceedings of ACL
    • Snow, R.1    Jurafsky, D.2    Ng, A.Y.3
  • 26
    • 70449695892 scopus 로고    scopus 로고
    • Learning entailment rules for unary templates
    • Idan Szpektor and Ido Dagan. 2008. Learning entailment rules for unary templates. In Proceedings of COLING
    • (2008) Proceedings of COLING
    • Szpektor, I.1    Dagan, I.2
  • 27
    • 84856187836 scopus 로고    scopus 로고
    • Augmenting wordnet-based inference with argument mapping
    • Idan Szpektor and Ido Dagan. 2009. Augmenting wordnet-based inference with argument mapping. In Proceedings of TextInfer.
    • (2009) Proceedings of TextInfer
    • Szpektor, I.1    Dagan, I.2
  • 30
    • 32944473074 scopus 로고    scopus 로고
    • A general framework for distributional similarity
    • Julie Weeds and David Weir. 2003. A general framework for distributional similarity. In Proceedings of EMNLP.
    • (2003) Proceedings of EMNLP
    • Weeds, J.1    Weir, D.2
  • 32
    • 65349191273 scopus 로고    scopus 로고
    • Unsupervised methods for determining object and relation synonyms on the web
    • Alexander Yates and Oren Etzioni. 2009. Unsupervised methods for determining object and relation synonyms on the web. Journal of Artificial Intelligence Research, 34:255-296.
    • (2009) Journal of Artificial Intelligence Research , vol.34 , pp. 255-296
    • Yates, A.1    Etzioni, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.