-
1
-
-
0000241853
-
Deterministic nonperiodic flow
-
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
-
E.N. Lorenz 1963 Deterministic nonperiodic flow J. Atmos. Sci. 20 130 141 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
2
-
-
62249200922
-
Yet another chaotic attractor
-
1729683 0962.37013 10.1142/S0218127499001024
-
G. Chen T. Ueta 1999 Yet another chaotic attractor Int. J. Bifurc. Chaos 9 1465 1466 1729683 0962.37013 10.1142/S0218127499001024
-
(1999)
Int. J. Bifurc. Chaos
, vol.9
, pp. 1465-1466
-
-
Chen, G.1
Ueta, T.2
-
3
-
-
0036011505
-
A new chaotic attractor coined
-
1063.34510 10.1142/S0218127402004620
-
J. Lü G. Chen 2002 A new chaotic attractor coined Int. J. Bifurc. Chaos 12 659 661 1063.34510 10.1142/S0218127402004620
-
(2002)
Int. J. Bifurc. Chaos
, vol.12
, pp. 659-661
-
-
Lü, J.1
Chen, G.2
-
4
-
-
18144402417
-
Analysis of a new chaotic system
-
10.1016/j.physa.2004.12.040
-
G. Qi G. Chen S. Du Z. Chen Z. Yuan 2005 Analysis of a new chaotic system Physica A 352 295 308 10.1016/j.physa.2004.12.040
-
(2005)
Physica A
, vol.352
, pp. 295-308
-
-
Qi, G.1
Chen, G.2
Du, S.3
Chen, Z.4
Yuan, Z.5
-
5
-
-
33751234196
-
A novel hyperchaos system only with one equilibrium
-
2287760 10.1016/j.physleta.2006.08.085
-
Z. Chen Y. Yang G. Qi Z. Yuan 2007 A novel hyperchaos system only with one equilibrium Phys. Lett. A 360 696 701 2287760 10.1016/j.physleta.2006.08.085
-
(2007)
Phys. Lett. A
, vol.360
, pp. 696-701
-
-
Chen, Z.1
Yang, Y.2
Qi, G.3
Yuan, Z.4
-
6
-
-
67349148897
-
3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system
-
1204.70021 10.1007/s11071-008-9417-4
-
L. Wang 2009 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system Nonlinear Dyn. 56 453 462 1204.70021 10.1007/s11071-008-9417-4
-
(2009)
Nonlinear Dyn.
, vol.56
, pp. 453-462
-
-
Wang, L.1
-
7
-
-
63849188557
-
Yet another 3D quadratic autonomous system generating three-wing and four-wing chaotic attractors
-
013107 2513755 10.1063/1.3070648
-
L. Wang 2009 Yet another 3D quadratic autonomous system generating three-wing and four-wing chaotic attractors Chaos 19 013107 2513755 10.1063/1.3070648
-
(2009)
Chaos
, vol.19
-
-
Wang, L.1
-
8
-
-
77953358076
-
A new type of four-wing chaotic attractors in 3-D quadratic autonomous systems
-
1189.34100 10.1007/s11071-009-9607-8
-
Z. Wang G. Qi Y. Sun M.A. van Wyk B.J. van Wyk 2010 A new type of four-wing chaotic attractors in 3-D quadratic autonomous systems Nonlinear Dyn. 60 443 457 1189.34100 10.1007/s11071-009-9607-8
-
(2010)
Nonlinear Dyn.
, vol.60
, pp. 443-457
-
-
Wang, Z.1
Qi, G.2
Sun, Y.3
Van Wyk, M.A.4
Van Wyk, B.J.5
-
9
-
-
78049530202
-
Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos
-
2737002 05841014 10.1007/s11071-010-9726-2
-
S. Dadras H. Momeni G. Qi 2010 Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos Nonlinear Dyn. 62 391 405 2737002 05841014 10.1007/s11071-010-9726-2
-
(2010)
Nonlinear Dyn.
, vol.62
, pp. 391-405
-
-
Dadras, S.1
Momeni, H.2
Qi, G.3
-
10
-
-
75149118777
-
Four-scroll hyperchaos and four-scroll chaos evolved from a novel 4D nonlinear smooth autonomous system
-
10.1016/j.physleta.2010.01.030
-
S. Dadras H. Momeni 2010 Four-scroll hyperchaos and four-scroll chaos evolved from a novel 4D nonlinear smooth autonomous system Phys. Lett. A 374 1368 1373 10.1016/j.physleta.2010.01.030
-
(2010)
Phys. Lett. A
, vol.374
, pp. 1368-1373
-
-
Dadras, S.1
Momeni, H.2
-
11
-
-
77953558703
-
Generating one-, two-, three- and four-scroll attractors from a novel four-dimensional smooth autonomous chaotic system
-
060506 10.1088/1674-1056/19/6/060506
-
S. Dadras H. Momeni 2010 Generating one-, two-, three- and four-scroll attractors from a novel four-dimensional smooth autonomous chaotic system Chin. Phys. B 19 060506 10.1088/1674-1056/19/6/060506
-
(2010)
Chin. Phys. B
, vol.19
-
-
Dadras, S.1
Momeni, H.2
-
12
-
-
67650999692
-
Analysis and control for a new chaotic system via piecewise linear feedback
-
1198.93023 10.1016/j.chaos.2009.03.158
-
J. Zhang W. Tang 2009 Analysis and control for a new chaotic system via piecewise linear feedback Chaos Solitons Fractals 42 2181 2190 1198.93023 10.1016/j.chaos.2009.03.158
-
(2009)
Chaos Solitons Fractals
, vol.42
, pp. 2181-2190
-
-
Zhang, J.1
Tang, W.2
-
13
-
-
70450237361
-
Control and synchronization for a class of new chaotic systems via linear feedback
-
2514331 1183.70075 10.1007/s11071-009-9509-9
-
J. Zhang W. Tang 2009 Control and synchronization for a class of new chaotic systems via linear feedback Nonlinear Dyn. 58 675 686 2514331 1183.70075 10.1007/s11071-009-9509-9
-
(2009)
Nonlinear Dyn.
, vol.58
, pp. 675-686
-
-
Zhang, J.1
Tang, W.2
-
14
-
-
70350343545
-
Chaos control and chaos synchronization for multi-scroll chaotic attractors generated using hyperbolic functions
-
2557684 1176.93033 10.1016/j.jmaa.2009.03.041
-
F. Xu P. Yu 2010 Chaos control and chaos synchronization for multi-scroll chaotic attractors generated using hyperbolic functions J. Math. Anal. Appl. 362 252 274 2557684 1176.93033 10.1016/j.jmaa.2009.03.041
-
(2010)
J. Math. Anal. Appl.
, vol.362
, pp. 252-274
-
-
Xu, F.1
Yu, P.2
-
15
-
-
78049481218
-
A chaotic system with Hölder continuity
-
2745938 1215.37026 10.1007/s11071-010-9760-0
-
J. Zhang W. Tang 2010 A chaotic system with Hölder continuity Nonlinear Dyn. 62 761 768 2745938 1215.37026 10.1007/s11071-010-9760-0
-
(2010)
Nonlinear Dyn.
, vol.62
, pp. 761-768
-
-
Zhang, J.1
Tang, W.2
-
16
-
-
0035640984
-
Bound for attractors and the existence of homoclinic orbit in the Lorenz system
-
1830478 10.1016/S0021-8928(01)00004-1
-
G. Leonov 2001 Bound for attractors and the existence of homoclinic orbit in the Lorenz system J. Appl. Math. Mech. 65 19 32 1830478 10.1016/S0021- 8928(01)00004-1
-
(2001)
J. Appl. Math. Mech.
, vol.65
, pp. 19-32
-
-
Leonov, G.1
-
17
-
-
67651219016
-
Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization
-
1198.93152 10.1016/j.chaos.2009.04.003
-
Y. Shu H. Xu Y. Zhao 2009 Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization Chaos Solitons Fractals 42 2852 2857 1198.93152 10.1016/j.chaos.2009.04.003
-
(2009)
Chaos Solitons Fractals
, vol.42
, pp. 2852-2857
-
-
Shu, Y.1
Xu, H.2
Zhao, Y.3
-
18
-
-
33750613088
-
On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization
-
X. Liao 2004 On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization Sci. China Ser. E 34 1404 1419
-
(2004)
Sci. China Ser. e
, vol.34
, pp. 1404-1419
-
-
Liao, X.1
-
19
-
-
33750606677
-
Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system
-
2260147 1104.37024 10.1016/j.jmaa.2005.11.008
-
D. Li J. Lu X. Wu G. Chen 2006 Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system J. Math. Anal. Appl. 323 844 853 2260147 1104.37024 10.1016/j.jmaa.2005.11.008
-
(2006)
J. Math. Anal. Appl.
, vol.323
, pp. 844-853
-
-
Li, D.1
Lu, J.2
Wu, X.3
Chen, G.4
-
20
-
-
40849098833
-
A butterfly-shaped localization set for the Lorenz attractor
-
2405991 1220.37013 10.1016/j.physleta.2007.11.067
-
M. Suzuki N. Sakamoto T. Yasukochi 2008 A butterfly-shaped localization set for the Lorenz attractor Phys. Lett. A 372 2614 2617 2405991 1220.37013 10.1016/j.physleta.2007.11.067
-
(2008)
Phys. Lett. A
, vol.372
, pp. 2614-2617
-
-
Suzuki, M.1
Sakamoto, N.2
Yasukochi, T.3
-
21
-
-
77949491885
-
Bounds of the hyper-chaotic Lorenz-Stenflo system
-
2602736 1222.37036 10.1016/j.cnsns.2009.09.015
-
P. Wang D. Li Q. Hu 2010 Bounds of the hyper-chaotic Lorenz-Stenflo system Commun. Nonlinear Sci. Numer. Simul. 15 2514 2520 2602736 1222.37036 10.1016/j.cnsns.2009.09.015
-
(2010)
Commun. Nonlinear Sci. Numer. Simul.
, vol.15
, pp. 2514-2520
-
-
Wang, P.1
Li, D.2
Hu, Q.3
-
22
-
-
68049144648
-
A hyperchaotic system from a chaotic system with one saddle and two stable node-foci
-
2548384 1179.37054 10.1016/j.jmaa.2009.06.051
-
Q. Yang Y. Liu 2009 A hyperchaotic system from a chaotic system with one saddle and two stable node-foci J. Math. Anal. Appl. 360 293 306 2548384 1179.37054 10.1016/j.jmaa.2009.06.051
-
(2009)
J. Math. Anal. Appl.
, vol.360
, pp. 293-306
-
-
Yang, Q.1
Liu, Y.2
|