-
1
-
-
0000260838
-
Dimension the Hausdorff des attracteurs
-
Sér. A, 290
-
Douady A., Oesterlé J. Dimension the Hausdorff des attracteurs. C.R. Acad. Sci. Paris, 24:1980;1135-1138. Sér. A, 290.
-
(1980)
C.R. Acad. Sci. Paris
, vol.24
, pp. 1135-1138
-
-
Douady, A.1
Oesterlé, J.2
-
3
-
-
0001640825
-
Chaotic behavior of multidimensional difference equations
-
Kaplan J.L., Yorke J.A. Chaotic behavior of multidimensional difference equations. Lecture Notes in Mathematics. 730:1979;204-227.
-
(1979)
Lecture Notes in Mathematics
, vol.730
, pp. 204-227
-
-
Kaplan, J.L.1
Yorke, J.A.2
-
4
-
-
34250238889
-
Some relations between dimension and Lyapunov exponents
-
Ledrappier F. Some relations between dimension and Lyapunov exponents. Commun. Math. Phys. 81:(2):1981;229-238.
-
(1981)
Commun. Math. Phys.
, vol.81
, Issue.2
, pp. 229-238
-
-
Ledrappier, F.1
-
6
-
-
0142146207
-
Local Lyapunov exponents and a local estimate of Hausdorff dimension
-
Eden A. Local Lyapunov exponents and a local estimate of Hausdorff dimension. Radio-Math. Modelling and Numer. Analysis. 23:(3):1989;405-413.
-
(1989)
Radio-Math. Modelling and Numer. Analysis
, vol.23
, Issue.3
, pp. 405-413
-
-
Eden, A.1
-
8
-
-
21944432516
-
Hausdorff and fractal dimension estimates for invariants sets of non-injective maps
-
Boichenko V.A., Franz A., Leonov G.A., Reitmann V. Hausdorff and fractal dimension estimates for invariants sets of non-injective maps. J. Analysis and Appl. 17:(1):1998;207-223.
-
(1998)
J. Analysis and Appl.
, vol.17
, Issue.1
, pp. 207-223
-
-
Boichenko, V.A.1
Franz, A.2
Leonov, G.A.3
Reitmann, V.4
-
9
-
-
0040666666
-
Maximum local Lyapunov dimension bounds the box dimension of chaotic attractors
-
Hunt B.R. Maximum local Lyapunov dimension bounds the box dimension of chaotic attractors. Nonlinearity. 9:(4):1996;845-853.
-
(1996)
Nonlinearity
, vol.9
, Issue.4
, pp. 845-853
-
-
Hunt, B.R.1
-
13
-
-
0002174635
-
-
Ya. G. Sinai, Shil'nikov L.P. Moscow: Mir
-
Sinai Ya. G., Shil'nikov L.P. Strange Attractors. 1981;Mir, Moscow.
-
(1981)
Strange Attractors
-
-
-
16
-
-
0347706700
-
A method of constructing positive invariant sets for the Lorenz system
-
Leonov G.A. A method of constructing positive invariant sets for the Lorenz system. Prikl. Mat. Mekh. 49:(5):1985;860-863.
-
(1985)
Prikl. Mat. Mekh.
, vol.49
, Issue.5
, pp. 860-863
-
-
Leonov, G.A.1
-
19
-
-
0347076181
-
An estimate of the bifurcation parameters of the separatrix loof of a saddle point of the Lonrez system
-
Leonov G.A. An estimate of the bifurcation parameters of the separatrix loof of a saddle point of the Lonrez system. Different. Uravneniya. 24:(6):1988;972-977.
-
(1988)
Different. Uravneniya
, vol.24
, Issue.6
, pp. 972-977
-
-
Leonov, G.A.1
-
20
-
-
0347706698
-
An estimate of the bifurcation values of the parameters of the Lorenz system
-
Leonov G.A. An estimate of the bifurcation values of the parameters of the Lorenz system. Uspekhi Mat. Nauk. 43:(3):1988;189-190.
-
(1988)
Uspekhi Mat. Nauk.
, vol.43
, Issue.3
, pp. 189-190
-
-
Leonov, G.A.1
-
21
-
-
0347076186
-
Reguläre und chaotische
-
Leipzig: Teubner
-
Reitmann V. Reguläre und chaotische. Dynamik. 1996;Teubner, Leipzig.
-
(1996)
Dynamik
-
-
Reitmann, V.1
-
22
-
-
0030140607
-
A shooting approach to chaos in the Lorenz equations
-
Hastings S.P., Troy W.C. A shooting approach to chaos in the Lorenz equations. J. Differ Equat. 127:(1):1996;41-53.
-
(1996)
J. Differ Equat.
, vol.127
, Issue.1
, pp. 41-53
-
-
Hastings, S.P.1
Troy, W.C.2
-
23
-
-
0030540448
-
Lorenz equations. Pt. 1: Existence and nonexistence of homoclinic orbits
-
Chen X. Lorenz equations. Pt. 1: Existence and nonexistence of homoclinic orbits. SIAM J. Math. Analysis. 27:(4):1996;1057-1069.
-
(1996)
SIAM J. Math. Analysis
, vol.27
, Issue.4
, pp. 1057-1069
-
-
Chen, X.1
|