-
1
-
-
0000241853
-
Deterministic non-periods flows
-
Lorenz E.N. Deterministic non-periods flows. J. Atoms Sci. 20 (1963) 130-141
-
(1963)
J. Atoms Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
2
-
-
62249200922
-
Yet another chaotic attractor
-
Chen G., and Ueta T. Yet another chaotic attractor. Int. J. Bifur. Chaos 9 (1999) 1465-1466
-
(1999)
Int. J. Bifur. Chaos
, vol.9
, pp. 1465-1466
-
-
Chen, G.1
Ueta, T.2
-
4
-
-
0036011505
-
A new chaotic attractor coined
-
Lü J., and Chen G. A new chaotic attractor coined. Int. J. Bifur. Chaos 12 (2002) 659-661
-
(2002)
Int. J. Bifur. Chaos
, vol.12
, pp. 659-661
-
-
Lü, J.1
Chen, G.2
-
5
-
-
0036999538
-
Bridge the gap between the Lorenz system and the Chen system
-
Lü J., Chen G., Cheng D., and Čelikovsky̌ S. Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifur. Chaos 12 (2002) 2917-2926
-
(2002)
Int. J. Bifur. Chaos
, vol.12
, pp. 2917-2926
-
-
Lü, J.1
Chen, G.2
Cheng, D.3
Čelikovsky̌, S.4
-
7
-
-
0037121821
-
Synchronization of a unified chaotic system and the application in secure communication
-
Lu J., Wu X., and Lü J. Synchronization of a unified chaotic system and the application in secure communication. Phys. Lett. A 305 (2002) 365-370
-
(2002)
Phys. Lett. A
, vol.305
, pp. 365-370
-
-
Lu, J.1
Wu, X.2
Lü, J.3
-
8
-
-
0035640984
-
Bound for attractors and the existence of homoclinic orbit in the Lorenz system
-
Leonov G. Bound for attractors and the existence of homoclinic orbit in the Lorenz system. J. Appl. Math. Mech. 65 (2001) 19-32
-
(2001)
J. Appl. Math. Mech.
, vol.65
, pp. 19-32
-
-
Leonov, G.1
-
9
-
-
0242425114
-
Complex dynamical behaviors of the chaotic Chen's system
-
Zhou T., Tang Y., and Chen G. Complex dynamical behaviors of the chaotic Chen's system. Int. J. Bifur. Chaos 9 (2003) 2561-2574
-
(2003)
Int. J. Bifur. Chaos
, vol.9
, pp. 2561-2574
-
-
Zhou, T.1
Tang, Y.2
Chen, G.3
-
10
-
-
0142168383
-
An ultimate bound on the trajectories of the Lorenz systems and its applications
-
Pogromsky A., Santoboni G., and Nijmeijer H. An ultimate bound on the trajectories of the Lorenz systems and its applications. Nonlinearity 16 (2003) 1597-1605
-
(2003)
Nonlinearity
, vol.16
, pp. 1597-1605
-
-
Pogromsky, A.1
Santoboni, G.2
Nijmeijer, H.3
-
12
-
-
4243055985
-
Estimating the bounds for the Lorenz family of chaotic systems
-
Li D., Lu J., Wu X., and Chen G. Estimating the bounds for the Lorenz family of chaotic systems. Chaos Solitons Fractals 23 (2005) 529-534
-
(2005)
Chaos Solitons Fractals
, vol.23
, pp. 529-534
-
-
Li, D.1
Lu, J.2
Wu, X.3
Chen, G.4
-
13
-
-
33750613088
-
On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization
-
Liao X. On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization. Sci. China Ser. E 34 (2004) 1404-1419
-
(2004)
Sci. China Ser. E
, vol.34
, pp. 1404-1419
-
-
Liao, X.1
|