-
1
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning, 40(2):139-158, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-158
-
-
Dietterich, T.G.1
-
2
-
-
2542488394
-
Smooth boosting and learning with malicious noise
-
R. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine Learning Research, 4:633-648, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 633-648
-
-
Servedio, R.1
-
3
-
-
2342482532
-
Optimally-smooth adaptive boosting and application to agnostic learning
-
D. Gavinsky. Optimally-smooth adaptive boosting and application to agnostic learning. Journal of Machine Learning Research, 4:101-117, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 101-117
-
-
Gavinsky, D.1
-
4
-
-
0005271994
-
Madaboost: A modification of adaboost
-
San Francisco, CA, USA Morgan Kaufmann Publishers Inc.
-
C. Domingo and O. Watanabe. Madaboost: A modification of adaboost. In Proceedings of the Thirteenth Annual Conference on Learning Theory, pages 180-189, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.
-
(2000)
Proceedings of the Thirteenth Annual Conference on Learning Theory
, pp. 180-189
-
-
Domingo, C.1
Watanabe, O.2
-
6
-
-
57049138338
-
On agnostic boosting and parity learning
-
New York, NY, USA ACM
-
A. T. Kalai, Y. Mansour, and E. Verbin. On agnostic boosting and parity learning. In STOC '08: Proceedings of the 40th annual ACM symposium on Theory of computing, pages 629-638, New York, NY, USA, 2008. ACM.
-
(2008)
STOC '08: Proceedings of the 40th Annual ACM Symposium on Theory of Computing
, pp. 629-638
-
-
Kalai, A.T.1
Mansour, Y.2
Verbin, E.3
-
8
-
-
0002192516
-
Decision theoretic generalizations of the pac model for neural net and other learning applications
-
D. Haussler. Decision theoretic generalizations of the pac model for neural net and other learning applications. Inf. Comput., 100(1):78-150, 1992.
-
(1992)
Inf. Comput.
, vol.100
, Issue.1
, pp. 78-150
-
-
Haussler, D.1
-
9
-
-
0001553979
-
Toward efficient agnostic learning
-
M. Kearns, R. Schapire, and L. Sellie. Toward Efficient Agnostic Learning. Machine Learning, 17(2):115-141, 1994.
-
(1994)
Machine Learning
, vol.17
, Issue.2
, pp. 115-141
-
-
Kearns, M.1
Schapire, R.2
Sellie, L.3
-
10
-
-
57049167124
-
Agnostically learning decision trees
-
New York, NY, USA ACM
-
P. Gopalan, A. T. Kalai, and A. R. Klivans. Agnostically learning decision trees. In Proceedings of the 40th annual ACM symposium on Theory of computing, pages 527-536, New York, NY, USA, 2008. ACM.
-
(2008)
Proceedings of the 40th Annual ACM Symposium on Theory of Computing
, pp. 527-536
-
-
Gopalan, P.1
Kalai, A.T.2
Klivans, A.R.3
-
12
-
-
56449118765
-
Random classification noise defeats all convex potential boosters
-
P. M. Long and R. A. Servedio. Random classification noise defeats all convex potential boosters. In ICML, pages 608-615, 2008.
-
(2008)
ICML
, pp. 608-615
-
-
Long, P.M.1
Servedio, R.A.2
-
15
-
-
3943060856
-
Improvement of boosting algorithm by modifying the weighting rule
-
M. Nakamura, H. Nomiya, and K. Uehara. Improvement of boosting algorithm by modifying the weighting rule. Annals of Mathematics and Artificial Intelligence, 41(1):95-109, 2004.
-
(2004)
Annals of Mathematics and Artificial Intelligence
, vol.41
, Issue.1
, pp. 95-109
-
-
Nakamura, M.1
Nomiya, H.2
Uehara, K.3
-
16
-
-
33746040864
-
Using validation sets to avoid overfitting in adaboost
-
G. Sutcliffe and R. Goebel, editors AAAI Press
-
T. Bylander and L. Tate. Using validation sets to avoid overfitting in adaboost. In G. Sutcliffe and R. Goebel, editors, FLAIRS Conference, pages 544-549. AAAI Press, 2006.
-
(2006)
FLAIRS Conference
, pp. 544-549
-
-
Bylander, T.1
Tate, L.2
-
17
-
-
84943264962
-
Agnostic boosting
-
Springer
-
S. Ben-David, P. M. Long, and Y. Mansour. Agnostic boosting. In Proceedings of the 14th Annual Conference on Computational Learning Theory, COLT 2001, volume 2111 of Lecture Notes in Artificial Intelligence, pages 507-516. Springer, 2001.
-
(2001)
Proceedings of the 14th Annual Conference on Computational Learning Theory, COLT 2001, Volume 2111 of Lecture Notes in Artificial Intelligence
, pp. 507-516
-
-
Ben-David, S.1
Long, P.M.2
Mansour, Y.3
-
18
-
-
33846991416
-
An empirical comparison of three boosting algorithms on real data sets with artificial class noise
-
T. Windeatt and F. Roli, editors Springer
-
R. A. McDonald, D. J. Hand, and I. A. Eckley. An empirical comparison of three boosting algorithms on real data sets with artificial class noise. In T. Windeatt and F. Roli, editors, Multiple Classifier Systems, volume 2709 of Lecture Notes in Computer Science, pages 35-44. Springer, 2003.
-
(2003)
Multiple Classifier Systems, Volume 2709 of Lecture Notes in Computer Science
, pp. 35-44
-
-
McDonald, R.A.1
Hand, D.J.2
Eckley, I.A.3
-
19
-
-
85162047207
-
Filterboost: Regression and classification on large datasets
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors MIT Press, Cambridge, MA
-
J. K. Bradley and R. Schapire. Filterboost: Regression and classification on large datasets. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 185-192. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 185-192
-
-
Bradley, J.K.1
Schapire, R.2
-
21
-
-
84858773307
-
Adaptive martingale boosting
-
P. M. Long and R. A. Servedio. Adaptive martingale boosting. In NIPS, pages 977-984, 2008.
-
(2008)
NIPS
, pp. 977-984
-
-
Long, P.M.1
Servedio, R.A.2
-
23
-
-
0028324717
-
Cryptographic limitations on learning Boolean formulae and finite automata
-
M. Kearns and L. Valiant. Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the ACM, 41(1):67-95, 1994.
-
(1994)
Journal of the ACM
, vol.41
, Issue.1
, pp. 67-95
-
-
Kearns, M.1
Valiant, L.2
-
24
-
-
0027869083
-
Learning decision trees using the fourier spectrum
-
E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. SIAM J. on Computing, 22(6):1331-1348, 1993.
-
(1993)
SIAM J. on Computing
, vol.22
, Issue.6
, pp. 1331-1348
-
-
Kushilevitz, E.1
Mansour, Y.2
-
25
-
-
3042612212
-
Learning intersections and thresholds of halfspaces
-
A. Klivans, R. O'Donnell, and R. Servedio. Learning intersections and thresholds of halfspaces. Journal of Computer & System Sciences, 68(4):808-840, 2004.
-
(2004)
Journal of Computer & System Sciences
, vol.68
, Issue.4
, pp. 808-840
-
-
Klivans, A.1
O'Donnell, R.2
Servedio, R.3
-
26
-
-
36948999941
-
-
Irvine, CA: University of California, School of Information and Computer Science
-
A. Asuncion and D. J. Newman. UCI Machine Learning Repository [http://www.ics.uci.edu/~mlearn/MLRepository.html] Irvine, CA: University of California, School of Information and Computer Science, 2007.
-
(2007)
UCI Machine Learning Repository
-
-
Asuncion, A.1
Newman, D.J.2
|