-
3
-
-
14344253306
-
Delegating classifier
-
New York, NY, USA ACM
-
C. Ferri, P. Flach, and J. Hernández-Orallo. Delegating classifier. In ICML'04: Proceedings of the twenty-first International Conference on Machine Learning, pages 37-44, New York, NY, USA, 2004. ACM.
-
(2004)
ICML'04: Proceedings of the Twenty-first International Conference on Machine Learning
, pp. 37-44
-
-
Ferri, C.1
Flach, P.2
Hernández-Orallo, J.3
-
5
-
-
57049167124
-
Agnostically learning decision trees
-
New York, NY, USA ACM
-
P. Gopalan, A.T. Kalai, and A.R. Klivans. Agnostically learning decision trees. In STOC'08: Proceedings of the fortieth annual ACM Symposium on the Theory of Computation, New York, NY, USA, 2008. ACM.
-
(2008)
STOC'08: Proceedings of the Fortieth Annual ACM Symposium on the Theory of Computation
-
-
Gopalan, P.1
Kalai, A.T.2
Klivans, A.R.3
-
6
-
-
0002192516
-
Decision-theoretic generalizations of the PAC model for neural networks and other applications
-
D. Haussler. Decision-theoretic generalizations of the PAC model for neural networks and other applications. Information and Computation, 100: 78-150, 1992.
-
(1992)
Information and Computation
, vol.100
, pp. 78-150
-
-
Haussler, D.1
-
7
-
-
0031339159
-
An efficient membership-query algorithm for learning DNF with respect to the uniform distribution
-
J.C. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. Journal of Computer and System Sciences, 55(3): 414-440, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.3
, pp. 414-440
-
-
Jackson, J.C.1
-
8
-
-
33746082261
-
Agnostically learning halfspaces
-
Washington, DC, USA IEEE Computer Society
-
A.T. Kalai, A.R. Klivans, Y. Mansour, and R.A. Servedio. Agnostically learning halfspaces. In FOCS'05: Proceedings of the 46th annual IEEE Symposium on Foundations of Computer Science, pages 11-20, Washington, DC, USA, 2005. IEEE Computer Society.
-
(2005)
FOCS'05: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science
, pp. 11-20
-
-
Kalai, A.T.1
Klivans, A.R.2
Mansour, Y.3
Servedio, R.A.4
-
9
-
-
0001553979
-
Toward efficient agnostic learning
-
M.J. Kearns, R.E. Schapire, and L.M. Sellie. Toward efficient agnostic learning. Machine Learning, 17(2): 115-141, 1994.
-
(1994)
Machine Learning
, vol.17
, Issue.2
, pp. 115-141
-
-
Kearns, M.J.1
Schapire, R.E.2
Sellie, L.M.3
-
10
-
-
0000776754
-
On the problem of the most efficient tests for statistical hypotheses
-
J. Neyman and E. S. Pearson. On the problem of the most efficient tests for statistical hypotheses. Philosophical Transactions of the Royal Society of London, Series A, Containing Papers of a Mathematical or Physical Character, 231: 289-337, 1933.
-
(1933)
Philosophical Transactions of the Royal Society of London, Series A, Containing Papers of a Mathematical or Physical Character
, vol.231
, pp. 289-337
-
-
Neyman, J.1
Pearson, E.S.2
-
11
-
-
34547481510
-
On the use of roc analysis for the optimization of abstaining classifiers
-
Tadeusz Pietraszek. On the use of roc analysis for the optimization of abstaining classifiers. Machine Learning, 68(2): 137-169, 2007.
-
(2007)
Machine Learning
, vol.68
, Issue.2
, pp. 137-169
-
-
Pietraszek, T.1
-
12
-
-
27744553952
-
A neyman-pearson approach to statistical learning
-
C. Scott and R. Nowak. A neyman-pearson approach to statistical learning. IEEE Transactions on Information Theory, 51(11): 3806-3819, 2005.
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, Issue.11
, pp. 3806-3819
-
-
Scott, C.1
Nowak, R.2
-
13
-
-
0021518106
-
A theory of the learnable
-
L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11): 1134-1142, 1984.
-
(1984)
Communications of the ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
-
14
-
-
33749245586
-
Cost-sensitive learning by cost-proportionate example weighting
-
Washington, DC, USA IEEE Computer Society
-
B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate example weighting. In ICDM'03: Proceeding of the third IEEE International Conference on Data Mining, page 435, Washington, DC, USA, 2003. IEEE Computer Society.
-
(2003)
ICDM'03: Proceeding of the Third IEEE International Conference on Data Mining
, pp. 435
-
-
Zadrozny, B.1
Langford, J.2
Abe, N.3
|