메뉴 건너뛰기




Volumn , Issue , 2009, Pages 531-539

Evaluating multi-class learning strategies in a hierarchical framework for object detection

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; ECONOMIC AND SOCIAL EFFECTS; LEARNING SYSTEMS; OBJECT RECOGNITION;

EID: 84858713365     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (17)

References (29)
  • 1
    • 39749186006 scopus 로고    scopus 로고
    • Labelme: A database and web-based tool for image annotation
    • Russell, B., Torralba, A., Murphy, K., and Freeman, W. T. (2008) Labelme: a database and web-based tool for image annotation. IJCV, 77, 157-173.
    • (2008) IJCV , vol.77 , pp. 157-173
    • Russell, B.1    Torralba, A.2    Murphy, K.3    Freeman, W.T.4
  • 2
    • 39749124915 scopus 로고    scopus 로고
    • Robust object detection with interleaved categorization and segmentation
    • Leibe, B., Leonardis, A., and Schiele, B. (2008) Robust object detection with interleaved categorization and segmentation. IJCV, 77, 259-289.
    • (2008) IJCV , vol.77 , pp. 259-289
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 3
    • 34047200109 scopus 로고    scopus 로고
    • Sharing visual features for multiclass and multi-view object detection
    • Torralba, A., Murphy, K. P., and Freeman, W. T. (2007) Sharing visual features for multiclass and multi-view object detection. IEEE PAMI, 29, 854-869.
    • (2007) IEEE PAMI , vol.29 , pp. 854-869
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 4
    • 51149105249 scopus 로고    scopus 로고
    • Learning an alphabet of shape and appearance for multi-class object detection
    • Opelt, A., Pinz, A., and Zisserman, A. (2008) Learning an alphabet of shape and appearance for multi-class object detection. IJCV, 80, 16-44.
    • (2008) IJCV , vol.80 , pp. 16-44
    • Opelt, A.1    Pinz, A.2    Zisserman, A.3
  • 5
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • Fei-Fei, L., Fergus, R., and Perona, P. (2004) Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. IEEE CVPR'04 Workshop on Generative-Model Based Vision.
    • (2004) IEEE CVPR'04 Workshop on Generative-model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 7
    • 77958463774 scopus 로고    scopus 로고
    • Unsupervised category modeling, recognition, and segmentation in images
    • Todorovic, S. and Ahuja, N. (2007) Unsupervised category modeling, recognition, and segmentation in images. IEEE PAMI.
    • (2007) IEEE PAMI
    • Todorovic, S.1    Ahuja, N.2
  • 9
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • Ranzato, M. A., Huang, F.-J., Boureau, Y.-L., and LeCun, Y. (2007) Unsupervised learning of invariant feature hierarchies with applications to object recognition. CVPR.
    • (2007) CVPR
    • Ranzato, M.A.1    Huang, F.-J.2    Boureau, Y.-L.3    LeCun, Y.4
  • 13
    • 35148867545 scopus 로고    scopus 로고
    • Towards scalable representations of visual categories: Learning a hierarchy of parts
    • Fidler, S. and Leonardis, A. (2007) Towards scalable representations of visual categories: Learning a hierarchy of parts. CVPR.
    • (2007) CVPR
    • Fidler, S.1    Leonardis, A.2
  • 14
    • 33845593439 scopus 로고    scopus 로고
    • Statistical learning of visual feature hierarchies. W. on learning
    • Scalzo, F. and Piater, J. H. (2005) Statistical learning of visual feature hierarchies. W. on Learning, CVPR.
    • (2005) CVPR
    • Scalzo, F.1    Piater, J.H.2
  • 15
    • 56749102488 scopus 로고    scopus 로고
    • Unsupervised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion
    • Zhu, L., Lin, C., Huang, H., Chen, Y., and Yuille, A. (2008) Unsupervised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion. ECCV, vol. 2, pp. 759-773.
    • (2008) ECCV , vol.2 , pp. 759-773
    • Zhu, L.1    Lin, C.2    Huang, H.3    Chen, Y.4    Yuille, A.5
  • 16
    • 0034981214 scopus 로고    scopus 로고
    • Coarse-to-fine face detection
    • Fleuret, F. and Geman, D. (2001) Coarse-to-fine face detection. IJCV, 41, 85-107.
    • (2001) IJCV , vol.41 , pp. 85-107
    • Fleuret, F.1    Geman, D.2
  • 17
    • 34948830186 scopus 로고    scopus 로고
    • Hierarchical matching of deformable shapes
    • Schwartz, J. and Felzenszwalb, P. (2007) Hierarchical matching of deformable shapes. CVPR.
    • (2007) CVPR
    • Schwartz, J.1    Felzenszwalb, P.2
  • 18
    • 34948869848 scopus 로고    scopus 로고
    • Learning the compositional nature of visual objects
    • Ommer, B. and Buhmann, J. M. (2007) Learning the compositional nature of visual objects. CVPR.
    • (2007) CVPR
    • Ommer, B.1    Buhmann, J.M.2
  • 20
    • 39749186647 scopus 로고    scopus 로고
    • Describing visual scenes using transformed objects and parts
    • Sudderth, E., Torralba, A., Freeman, W. T., and Willsky, A. (2008) Describing visual scenes using transformed objects and parts. IJCV, pp. 291-330.
    • (2008) IJCV , pp. 291-330
    • Sudderth, E.1    Torralba, A.2    Freeman, W.T.3    Willsky, A.4
  • 21
    • 84898874380 scopus 로고    scopus 로고
    • Optimization framework for learning a hierarchical shape vocabulary for object class detection
    • Fidler, S., Boben, M., and Leonardis, A. (2009) Optimization framework for learning a hierarchical shape vocabulary for object class detection. BMVC.
    • (2009) BMVC
    • Fidler, S.1    Boben, M.2    Leonardis, A.3
  • 22
    • 12844249589 scopus 로고    scopus 로고
    • Learning to detect objects in images via a sparse, part-based representation
    • Agarwal, S., Awan, A., and Roth, D. (2004) Learning to detect objects in images via a sparse, part-based representation. IEEE PAMI, 26, 1475-1490.
    • (2004) IEEE PAMI , vol.26 , pp. 1475-1490
    • Agarwal, S.1    Awan, A.2    Roth, D.3
  • 23
    • 45349091203 scopus 로고    scopus 로고
    • Multi-scale categorical object recognition using contour fragments
    • Shotton, J., Blake, A., and Cipolla, R. (2008) Multi-scale categorical object recognition using contour fragments. PAMI, 30, 1270-1281.
    • (2008) PAMI , vol.30 , pp. 1270-1281
    • Shotton, J.1    Blake, A.2    Cipolla, R.3
  • 24
    • 34948828581 scopus 로고    scopus 로고
    • Accurate object detection with deformable shape models learnt from images
    • Ferrari, V., Fevrier, L., Jurie, F., and Schmid, C. (2007) Accurate object detection with deformable shape models learnt from images. CVPR.
    • (2007) CVPR
    • Ferrari, V.1    Fevrier, L.2    Jurie, F.3    Schmid, C.4
  • 25
    • 50649090443 scopus 로고    scopus 로고
    • How good are local features for classes of geometric objects?
    • Stark, M. and Schiele, B. (2007) How good are local features for classes of geometric objects? ICCV.
    • (2007) ICCV
    • Stark, M.1    Schiele, B.2
  • 26
    • 51949103501 scopus 로고    scopus 로고
    • Decomposition, discovery and detection of visual categories using topic models
    • Fritz, M. and Schiele, B. (2008) Decomposition, discovery and detection of visual categories using topic models. CVPR.
    • (2008) CVPR
    • Fritz, M.1    Schiele, B.2
  • 27
    • 33845569574 scopus 로고    scopus 로고
    • Multiclass object recognition with sparse, localized features
    • Mutch, J. and Lowe, D. G. (2006) Multiclass object recognition with sparse, localized features. CVPR, pp. 11-18.
    • (2006) CVPR , pp. 11-18
    • Mutch, J.1    Lowe, D.G.2
  • 28
    • 84898457494 scopus 로고    scopus 로고
    • Efficiently combining contour and texture cues for object recognition
    • Shotton, J., Blake, A., and Cipolla, R. (2008) Efficiently combining contour and texture cues for object recognition. BMVC.
    • (2008) BMVC
    • Shotton, J.1    Blake, A.2    Cipolla, R.3
  • 29
    • 51949087368 scopus 로고    scopus 로고
    • Connected segmentation tree - A joint representation of region layout and hierarchy
    • Ahuja, N. and Todorovic, S. (2008) Connected segmentation tree - a joint representation of region layout and hierarchy. CVPR.
    • (2008) CVPR
    • Ahuja, N.1    Todorovic, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.