메뉴 건너뛰기




Volumn 30, Issue 3, 2012, Pages 155-165

Short self-assembling peptides as building blocks for modern nanodevices

Author keywords

[No Author keywords available]

Indexed keywords

BIONANOTECHNOLOGY; BIORECOGNITION ELEMENTS; BUILDING BLOCKES; FUNCTIONAL DEVICES; NANO-DEVICES; NANOPARTICLE ARRAY; ORGANIC TEMPLATES; PLASMONIC; RATIONAL DESIGN; SELF ASSEMBLED NANOSTRUCTURES; SELF-ASSEMBLING PEPTIDES; SEMICONDUCTING NANOWIRES; SUPRAMOLECULAR STRUCTURE;

EID: 84858074134     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2011.11.001     Document Type: Review
Times cited : (209)

References (85)
  • 1
    • 84858074803 scopus 로고    scopus 로고
    • Self-assembly of short peptides for nanotechnological applications
    • Humana Press, O. Shoseyov, I. Levy (Eds.)
    • Gazit E. Self-assembly of short peptides for nanotechnological applications. Nanobiotechnology 2008, 385-395. Humana Press. O. Shoseyov, I. Levy (Eds.).
    • (2008) Nanobiotechnology , pp. 385-395
    • Gazit, E.1
  • 2
    • 77949343018 scopus 로고    scopus 로고
    • Peptide-based methods for the preparation of nanostructured inorganic materials
    • Chen C.-L., Rosi N.L. Peptide-based methods for the preparation of nanostructured inorganic materials. Angew. Chem. Int. Ed. 2010, 49:1924-1942.
    • (2010) Angew. Chem. Int. Ed. , vol.49 , pp. 1924-1942
    • Chen, C.-L.1    Rosi, N.L.2
  • 3
    • 0037192455 scopus 로고    scopus 로고
    • Toward self-organization and complex matter
    • Lehn J.M. Toward self-organization and complex matter. Science 2002, 295:2400-2403.
    • (2002) Science , vol.295 , pp. 2400-2403
    • Lehn, J.M.1
  • 4
    • 0344490335 scopus 로고    scopus 로고
    • Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition
    • Scheibel T., et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4527-4532.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 4527-4532
    • Scheibel, T.1
  • 5
    • 70349086423 scopus 로고    scopus 로고
    • Manipulation of biological samples using micro and nano techniques
    • Castillo J., et al. Manipulation of biological samples using micro and nano techniques. Integr. Biol. 2009, 1:30-42.
    • (2009) Integr. Biol. , vol.1 , pp. 30-42
    • Castillo, J.1
  • 6
    • 27144488401 scopus 로고    scopus 로고
    • Electrothermally activated SU-8 microgripper for single cell manipulation in solution
    • Chronis N., Lee L.P. Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J. MEMS 2005, 14:857-863.
    • (2005) J. MEMS , vol.14 , pp. 857-863
    • Chronis, N.1    Lee, L.P.2
  • 7
    • 77949903483 scopus 로고    scopus 로고
    • Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience
    • Cavalli S., et al. Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience. Chem. Soc. Rev. 2010, 39:241-263.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 241-263
    • Cavalli, S.1
  • 8
    • 84857506134 scopus 로고    scopus 로고
    • From short peptides to nanofibers to macromolecular assemblies in biomedicine
    • Loo Y., et al. From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnol. Adv. 2011, 10.1016/j.biotechadv.2011.10.004.
    • (2011) Biotechnol. Adv.
    • Loo, Y.1
  • 9
    • 4143141192 scopus 로고    scopus 로고
    • Self-assembling peptides and proteins for nanotechnological applications
    • Rajagopal K., Schneider J.P. Self-assembling peptides and proteins for nanotechnological applications. Curr. Opin. Struct. Biol. 2004, 14:480-486.
    • (2004) Curr. Opin. Struct. Biol. , vol.14 , pp. 480-486
    • Rajagopal, K.1    Schneider, J.P.2
  • 10
    • 77954946648 scopus 로고    scopus 로고
    • Designer self-assembling peptide nanofiber biological materials
    • Hauser C.A.E., Zhang S. Designer self-assembling peptide nanofiber biological materials. Chem. Soc. Rev. 2010, 39:2780-2790.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 2780-2790
    • Hauser, C.A.E.1    Zhang, S.2
  • 11
    • 33750991308 scopus 로고    scopus 로고
    • Self-assembly and applications of biomimetic and bioactive peptide-amphiphiles
    • Kokkoli E., et al. Self-assembly and applications of biomimetic and bioactive peptide-amphiphiles. Soft Matter 2006, 2:1015-1024.
    • (2006) Soft Matter , vol.2 , pp. 1015-1024
    • Kokkoli, E.1
  • 12
    • 34547316314 scopus 로고    scopus 로고
    • Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization
    • Gazit E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 2007, 36:1263-1269.
    • (2007) Chem. Soc. Rev. , vol.36 , pp. 1263-1269
    • Gazit, E.1
  • 13
    • 72549114594 scopus 로고    scopus 로고
    • Self-assembled arrays of peptide nanotubes by vapour deposition
    • Adler-Abramovich L., et al. Self-assembled arrays of peptide nanotubes by vapour deposition. Nat. Nanotechnol. 2009, 4:849-854.
    • (2009) Nat. Nanotechnol. , vol.4 , pp. 849-854
    • Adler-Abramovich, L.1
  • 14
    • 0037466613 scopus 로고    scopus 로고
    • Casting metal nanowires within discrete self-assembled peptide nanotubes
    • Reches M., Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 2003, 300:625-627.
    • (2003) Science , vol.300 , pp. 625-627
    • Reches, M.1    Gazit, E.2
  • 15
    • 79959776703 scopus 로고    scopus 로고
    • Charged diphenylalanine nanotubes and controlled hierarchical self-assembly
    • Wang M., et al. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly. ACS Nano 2011, 5:4448-4454.
    • (2011) ACS Nano , vol.5 , pp. 4448-4454
    • Wang, M.1
  • 16
    • 77649268868 scopus 로고    scopus 로고
    • Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals
    • Zhu P., et al. Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chemistry 2010, 16:3176-3183.
    • (2010) Chemistry , vol.16 , pp. 3176-3183
    • Zhu, P.1
  • 17
    • 54949125704 scopus 로고    scopus 로고
    • High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor
    • Ryu J., Park C.B. High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor. Adv. Mater. 2008, 20:3754-3758.
    • (2008) Adv. Mater. , vol.20 , pp. 3754-3758
    • Ryu, J.1    Park, C.B.2
  • 18
    • 34247243833 scopus 로고    scopus 로고
    • Controlled patterning of aligned self-assembled peptide nanotubes
    • Reches M., Gazit E. Controlled patterning of aligned self-assembled peptide nanotubes. Nat. Nanotechnol. 2006, 1:195-200.
    • (2006) Nat. Nanotechnol. , vol.1 , pp. 195-200
    • Reches, M.1    Gazit, E.2
  • 19
    • 34547217464 scopus 로고    scopus 로고
    • Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes
    • Niu L., et al. Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes. Langmuir 2007, 23:7443-7446.
    • (2007) Langmuir , vol.23 , pp. 7443-7446
    • Niu, L.1
  • 20
    • 23744509819 scopus 로고    scopus 로고
    • Peptide nanotube-modified electrodes for enzyme-biosensor applications
    • Yemini M., et al. Peptide nanotube-modified electrodes for enzyme-biosensor applications. Anal. Chem. 2005, 77:5155-5159.
    • (2005) Anal. Chem. , vol.77 , pp. 5155-5159
    • Yemini, M.1
  • 21
    • 12844264701 scopus 로고    scopus 로고
    • Novel electrochemical biosensing platform using self-assembled peptide nanotubes
    • Yemini M., et al. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 2004, 5:183-186.
    • (2004) Nano Lett. , vol.5 , pp. 183-186
    • Yemini, M.1
  • 22
    • 85039428387 scopus 로고    scopus 로고
    • Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring
    • Adler-Abramovich L., et al. Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring. Small 2010, 6:825-831.
    • (2010) Small , vol.6 , pp. 825-831
    • Adler-Abramovich, L.1
  • 23
    • 37549038614 scopus 로고    scopus 로고
    • Alignment of aromatic peptide tubes in strong magnetic fields
    • Hill R.J.A., et al. Alignment of aromatic peptide tubes in strong magnetic fields. Adv. Mater. 2007, 19:4474-4479.
    • (2007) Adv. Mater. , vol.19 , pp. 4474-4479
    • Hill, R.J.A.1
  • 24
    • 39649089850 scopus 로고    scopus 로고
    • Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology
    • Adler-Abramovich L., Gazit E. Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology. J. Pept. Sci. 2008, 14:217-223.
    • (2008) J. Pept. Sci. , vol.14 , pp. 217-223
    • Adler-Abramovich, L.1    Gazit, E.2
  • 25
    • 67650077969 scopus 로고    scopus 로고
    • Thermomechanical manipulation of aromatic peptide nanotubes
    • Sedman V.L., et al. Thermomechanical manipulation of aromatic peptide nanotubes. Langmuir 2009, 25:7256-7259.
    • (2009) Langmuir , vol.25 , pp. 7256-7259
    • Sedman, V.L.1
  • 26
    • 59349085329 scopus 로고    scopus 로고
    • Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis
    • Castillo J., et al. Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis. Electrophoresis 2008, 29:5026-5032.
    • (2008) Electrophoresis , vol.29 , pp. 5026-5032
    • Castillo, J.1
  • 27
    • 66349112899 scopus 로고    scopus 로고
    • Patterned arrays of ordered peptide nanostructures
    • Adler-Abramovich L., et al. Patterned arrays of ordered peptide nanostructures. J. Nanosci. Nanotechnol. 2009, 9:1701-1708.
    • (2009) J. Nanosci. Nanotechnol. , vol.9 , pp. 1701-1708
    • Adler-Abramovich, L.1
  • 28
    • 84858075157 scopus 로고    scopus 로고
    • Self-assembled peptide nanotubes as an etching material for the rapid fabrication of silicon wires
    • Larsen M., et al. Self-assembled peptide nanotubes as an etching material for the rapid fabrication of silicon wires. Bionanoscience 2011, 1:31-37.
    • (2011) Bionanoscience , vol.1 , pp. 31-37
    • Larsen, M.1
  • 29
    • 77953137544 scopus 로고    scopus 로고
    • Bioinspired peptide nanotubes: deposition technology and physical properties
    • Shklovsky J., et al. Bioinspired peptide nanotubes: deposition technology and physical properties. Mater. Sci. Eng. B 2010, 169:62-66.
    • (2010) Mater. Sci. Eng. B , vol.169 , pp. 62-66
    • Shklovsky, J.1
  • 30
    • 84863305159 scopus 로고    scopus 로고
    • Self-assembled diphenylalanine nanowires for cellular studies and sensor applications
    • Sasso L., et al. Self-assembled diphenylalanine nanowires for cellular studies and sensor applications. J. Nanosci. Nanotechnol. 2011, 10.1166/jnn.2011.4534.
    • (2011) J. Nanosci. Nanotechnol.
    • Sasso, L.1
  • 31
    • 75749121048 scopus 로고    scopus 로고
    • Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage
    • Ryu J., et al. Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano 2009, 4:159-164.
    • (2009) ACS Nano , vol.4 , pp. 159-164
    • Ryu, J.1
  • 32
    • 78650315603 scopus 로고    scopus 로고
    • Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries
    • Ryu J., et al. Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries. Adv. Mater. 2010, 22:5537-5541.
    • (2010) Adv. Mater. , vol.22 , pp. 5537-5541
    • Ryu, J.1
  • 33
    • 78751508452 scopus 로고    scopus 로고
    • A microfluidic system incorporated with peptide/Pd nanowires for heterogeneous catalytic reactions
    • Ryoo H.-I., et al. A microfluidic system incorporated with peptide/Pd nanowires for heterogeneous catalytic reactions. Lab Chip 2011, 11:378-380.
    • (2011) Lab Chip , vol.11 , pp. 378-380
    • Ryoo, H.-I.1
  • 34
    • 77649092087 scopus 로고    scopus 로고
    • Strong piezoelectricity in bioinspired peptide nanotubes
    • Kholkin A., et al. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 2010, 4:610-614.
    • (2010) ACS Nano , vol.4 , pp. 610-614
    • Kholkin, A.1
  • 35
    • 79251592533 scopus 로고    scopus 로고
    • Self-assembly of semiconducting photoluminescent peptide nanowires in the vapor phase
    • Lee J.S., et al. Self-assembly of semiconducting photoluminescent peptide nanowires in the vapor phase. Angew. Chem. Int. Ed. 2011, 50:1164-1167.
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 1164-1167
    • Lee, J.S.1
  • 36
    • 79952961594 scopus 로고    scopus 로고
    • Selective detection of neurotoxin by photoluminescent peptide nanotubes
    • Kim J.H., et al. Selective detection of neurotoxin by photoluminescent peptide nanotubes. Small 2011, 7:718-722.
    • (2011) Small , vol.7 , pp. 718-722
    • Kim, J.H.1
  • 37
    • 78650602521 scopus 로고    scopus 로고
    • Self-assembled, photoluminescent peptide hydrogel as a versatile platform for enzyme-based optical biosensors
    • Kim J.H., et al. Self-assembled, photoluminescent peptide hydrogel as a versatile platform for enzyme-based optical biosensors. Biosens. Bioelectron. 2011, 26:1860-1865.
    • (2011) Biosens. Bioelectron. , vol.26 , pp. 1860-1865
    • Kim, J.H.1
  • 38
    • 68949088198 scopus 로고    scopus 로고
    • Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations
    • Tamamis P., et al. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations. Biophys. J. 2009, 96:5020-5029.
    • (2009) Biophys. J. , vol.96 , pp. 5020-5029
    • Tamamis, P.1
  • 39
    • 33744932979 scopus 로고    scopus 로고
    • The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's beta-amyloid polypeptide
    • Goerbitz C.H. The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's beta-amyloid polypeptide. Chem. Commun. 2006, 2332-2334.
    • (2006) Chem. Commun. , pp. 2332-2334
    • Goerbitz, C.H.1
  • 40
    • 78149241540 scopus 로고    scopus 로고
    • Elementary building blocks of self-assembled peptide nanotubes
    • Amdursky N., et al. Elementary building blocks of self-assembled peptide nanotubes. J. Am. Chem. Soc. 2010, 132:15632-15636.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 15632-15636
    • Amdursky, N.1
  • 41
    • 33244497383 scopus 로고    scopus 로고
    • Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications
    • Adler-Abramovich L., et al. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir 2006, 22:1313-1320.
    • (2006) Langmuir , vol.22 , pp. 1313-1320
    • Adler-Abramovich, L.1
  • 42
    • 74849093672 scopus 로고    scopus 로고
    • High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks
    • Ryu J., Park C.B. High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks. Biotechnol. Bioeng. 2010, 105:221-230.
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 221-230
    • Ryu, J.1    Park, C.B.2
  • 43
    • 79952676736 scopus 로고    scopus 로고
    • Stability of diphenylalanine peptide nanotubes in solution
    • Andersen K.B., et al. Stability of diphenylalanine peptide nanotubes in solution. Nanoscale 2011, 3:994-998.
    • (2011) Nanoscale , vol.3 , pp. 994-998
    • Andersen, K.B.1
  • 44
    • 67549138051 scopus 로고    scopus 로고
    • Design of metal-binding sites onto self-assembled peptide fibrils
    • Kasotakis E., et al. Design of metal-binding sites onto self-assembled peptide fibrils. Biopolymers 2009, 92:164-172.
    • (2009) Biopolymers , vol.92 , pp. 164-172
    • Kasotakis, E.1
  • 45
    • 40449119376 scopus 로고    scopus 로고
    • Directed three-dimensional patterning of self-assembled peptide fibrils
    • Dinca V., et al. Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett. 2008, 8:538-543.
    • (2008) Nano Lett. , vol.8 , pp. 538-543
    • Dinca, V.1
  • 46
    • 80051694801 scopus 로고    scopus 로고
    • Development of an electrochemical metal-ion biosensor using self-assembled peptide nanofibrils
    • Viguier B., et al. Development of an electrochemical metal-ion biosensor using self-assembled peptide nanofibrils. ACS Appl. Mater. Interfaces 2011, 3:1594-1600.
    • (2011) ACS Appl. Mater. Interfaces , vol.3 , pp. 1594-1600
    • Viguier, B.1
  • 47
    • 0027416047 scopus 로고
    • Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane
    • Zhang S., et al. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. U.S.A. 1993, 90:3334-3338.
    • (1993) Proc. Natl. Acad. Sci. U.S.A. , vol.90 , pp. 3334-3338
    • Zhang, S.1
  • 48
    • 44449176603 scopus 로고    scopus 로고
    • Modification of hydrophilic and hydrophobic surfaces using an ionic-complementary peptide
    • Yang H., et al. Modification of hydrophilic and hydrophobic surfaces using an ionic-complementary peptide. PLoS ONE 2007, 2:e1325.
    • (2007) PLoS ONE , vol.2
    • Yang, H.1
  • 49
    • 75749098918 scopus 로고    scopus 로고
    • Improved enzyme immobilization on an ionic-complementary peptide-modified electrode for biomolecular sensing
    • Qian Z., et al. Improved enzyme immobilization on an ionic-complementary peptide-modified electrode for biomolecular sensing. Langmuir 2009, 26:2176-2180.
    • (2009) Langmuir , vol.26 , pp. 2176-2180
    • Qian, Z.1
  • 50
    • 51849138936 scopus 로고    scopus 로고
    • Ionic-complementary peptide-modified highly ordered pyrolytic graphite electrode for biosensor application
    • Yang H., et al. Ionic-complementary peptide-modified highly ordered pyrolytic graphite electrode for biosensor application. Biotechnol. Prog. 2008, 24:964-971.
    • (2008) Biotechnol. Prog. , vol.24 , pp. 964-971
    • Yang, H.1
  • 51
    • 77955645840 scopus 로고    scopus 로고
    • Bioinspired target-specific crystallization on peptide nanotubes for ultrasensitive Pb ion detection
    • de la Rica R., et al. Bioinspired target-specific crystallization on peptide nanotubes for ultrasensitive Pb ion detection. Small 2010, 6:1753-1756.
    • (2010) Small , vol.6 , pp. 1753-1756
    • de la Rica, R.1
  • 52
    • 77952691252 scopus 로고    scopus 로고
    • Peptide-nanotube biochips for label-free detection of multiple pathogens
    • de la Rica R., et al. Peptide-nanotube biochips for label-free detection of multiple pathogens. Small 2010, 6:1092-1095.
    • (2010) Small , vol.6 , pp. 1092-1095
    • de la Rica, R.1
  • 53
    • 57049152893 scopus 로고    scopus 로고
    • Label-free pathogen detection with sensor chips assembled from peptide nanotubes
    • de la Rica R., et al. Label-free pathogen detection with sensor chips assembled from peptide nanotubes. Angew. Chem. Int. Ed. 2008, 47:9752-9755.
    • (2008) Angew. Chem. Int. Ed. , vol.47 , pp. 9752-9755
    • de la Rica, R.1
  • 54
    • 53849137352 scopus 로고    scopus 로고
    • A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices
    • Chen C.-L., et al. A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. J. Am. Chem. Soc. 2008, 130:13555-13557.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 13555-13557
    • Chen, C.-L.1
  • 55
    • 0036879208 scopus 로고    scopus 로고
    • Biomimetic synthesis and patterning of silver nanoparticles
    • Naik R.R., et al. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 2002, 1:169-172.
    • (2002) Nat. Mater. , vol.1 , pp. 169-172
    • Naik, R.R.1
  • 56
    • 77957707778 scopus 로고    scopus 로고
    • Expeditious synthesis and assembly of sub-100nm hollow spherical gold nanoparticle superstructures
    • Song C., et al. Expeditious synthesis and assembly of sub-100nm hollow spherical gold nanoparticle superstructures. J. Am. Chem. Soc. 2010, 132:14033-14035.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 14033-14035
    • Song, C.1
  • 57
    • 78649869576 scopus 로고    scopus 로고
    • Preparation of 1-D nanoparticle superstructures with tailorable thicknesses using gold-binding peptide conjugates
    • Hwang L., et al. Preparation of 1-D nanoparticle superstructures with tailorable thicknesses using gold-binding peptide conjugates. Chem. Commun. 2011, 47:185-187.
    • (2011) Chem. Commun. , vol.47 , pp. 185-187
    • Hwang, L.1
  • 58
    • 77952565231 scopus 로고    scopus 로고
    • Preparation of unique 1-D nanoparticle superstructures and tailoring their structural features
    • Chen C.-L., Rosi N.L. Preparation of unique 1-D nanoparticle superstructures and tailoring their structural features. J. Am. Chem. Soc. 2010, 132:6902-6903.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 6902-6903
    • Chen, C.-L.1    Rosi, N.L.2
  • 59
    • 79960239543 scopus 로고    scopus 로고
    • Simultaneous synthesis of temperature-tunable peptide and gold nanoparticle hybrid spheres
    • Kim J., et al. Simultaneous synthesis of temperature-tunable peptide and gold nanoparticle hybrid spheres. Biomacromolecules 2011, 12:2518-2523.
    • (2011) Biomacromolecules , vol.12 , pp. 2518-2523
    • Kim, J.1
  • 60
    • 47549084592 scopus 로고    scopus 로고
    • Integration of amyloid nanowires in organic solar cells
    • Barrau S., et al. Integration of amyloid nanowires in organic solar cells. Appl. Phys. Lett. 2008, 93:023307.
    • (2008) Appl. Phys. Lett. , vol.93 , pp. 023307
    • Barrau, S.1
  • 61
    • 42949104736 scopus 로고    scopus 로고
    • Modification of fluorophore photophysics through peptide-driven self-assembly
    • Channon K.J., et al. Modification of fluorophore photophysics through peptide-driven self-assembly. J. Am. Chem. Soc. 2008, 130:5487-5491.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 5487-5491
    • Channon, K.J.1
  • 62
    • 69849085466 scopus 로고    scopus 로고
    • Efficient energy transfer within self-assembling peptide fibers: a route to light-harvesting nanomaterials
    • Channon K.J., et al. Efficient energy transfer within self-assembling peptide fibers: a route to light-harvesting nanomaterials. J. Am. Chem. Soc. 2009, 131:12520-12521.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 12520-12521
    • Channon, K.J.1
  • 63
    • 57249104956 scopus 로고    scopus 로고
    • Light harvesting antenna on an amyloid scaffold
    • Liang Y., et al. Light harvesting antenna on an amyloid scaffold. Chem. Commun. 2008, 6522-6524.
    • (2008) Chem. Commun. , pp. 6522-6524
    • Liang, Y.1
  • 64
    • 34249695515 scopus 로고    scopus 로고
    • Simultaneous self-assembly, orientation, and patterning of peptide-amphiphile nanofibers by soft lithography
    • Hung A.M., Stupp S.I. Simultaneous self-assembly, orientation, and patterning of peptide-amphiphile nanofibers by soft lithography. Nano Lett. 2007, 7:1165-1171.
    • (2007) Nano Lett. , vol.7 , pp. 1165-1171
    • Hung, A.M.1    Stupp, S.I.2
  • 65
    • 66749172952 scopus 로고    scopus 로고
    • Understanding factors affecting alignment of self-assembling nanofibers patterned by sonication-assisted solution embossing
    • Hung A.M., Stupp S.I. Understanding factors affecting alignment of self-assembling nanofibers patterned by sonication-assisted solution embossing. Langmuir 2009, 25:7084-7089.
    • (2009) Langmuir , vol.25 , pp. 7084-7089
    • Hung, A.M.1    Stupp, S.I.2
  • 66
    • 79955075237 scopus 로고    scopus 로고
    • Bioinspired magnetite mineralization of peptide-amphiphile nanofibers
    • Sone E.D., Stupp S.I. Bioinspired magnetite mineralization of peptide-amphiphile nanofibers. Chem. Mater. 2011, 23:2005-2007.
    • (2011) Chem. Mater. , vol.23 , pp. 2005-2007
    • Sone, E.D.1    Stupp, S.I.2
  • 67
    • 54949086350 scopus 로고    scopus 로고
    • Laterally spaced linear nanoparticle arrays templated by laminated beta-sheet fibrils
    • Lamm M.S., et al. Laterally spaced linear nanoparticle arrays templated by laminated beta-sheet fibrils. Adv. Mater. 2008, 20:447-451.
    • (2008) Adv. Mater. , vol.20 , pp. 447-451
    • Lamm, M.S.1
  • 68
    • 70349900350 scopus 로고    scopus 로고
    • One-dimensional gold nanoparticle arrays by electrostatically directed organization using polypeptide self-assembly
    • Sharma N., et al. One-dimensional gold nanoparticle arrays by electrostatically directed organization using polypeptide self-assembly. Angew. Chem. Int. Ed. 2009, 48:7078-7082.
    • (2009) Angew. Chem. Int. Ed. , vol.48 , pp. 7078-7082
    • Sharma, N.1
  • 69
    • 80052063908 scopus 로고    scopus 로고
    • Ordered nanopattern arrangement of gold nanoparticles on β-sheet peptide templates through nucleobase pairing
    • Nonoyama T., et al. Ordered nanopattern arrangement of gold nanoparticles on β-sheet peptide templates through nucleobase pairing. ACS Nano 2011, 5:6174-6183.
    • (2011) ACS Nano , vol.5 , pp. 6174-6183
    • Nonoyama, T.1
  • 70
    • 58049218930 scopus 로고    scopus 로고
    • Self-assembling peptide coatings designed for highly luminescent suspension of single-walled carbon nanotubes
    • Tsyboulski D.A., et al. Self-assembling peptide coatings designed for highly luminescent suspension of single-walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130:17134-17140.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 17134-17140
    • Tsyboulski, D.A.1
  • 71
    • 29344466943 scopus 로고    scopus 로고
    • Peptergents: peptide detergents that improve stability and functionality of a membrane protein, glycerol-3-phosphate dehydrogenase
    • Yeh J.I., et al. Peptergents: peptide detergents that improve stability and functionality of a membrane protein, glycerol-3-phosphate dehydrogenase. Biochemistry 2005, 44:16912-16919.
    • (2005) Biochemistry , vol.44 , pp. 16912-16919
    • Yeh, J.I.1
  • 72
    • 61749086899 scopus 로고    scopus 로고
    • Designer peptide surfactants stabilize functional photosystem-I membrane complex in aqueous solution for extended time
    • Matsumoto K., et al. Designer peptide surfactants stabilize functional photosystem-I membrane complex in aqueous solution for extended time. J. Phys. Chem. B 2009, 113:75-83.
    • (2009) J. Phys. Chem. B , vol.113 , pp. 75-83
    • Matsumoto, K.1
  • 73
    • 22744432209 scopus 로고    scopus 로고
    • Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time
    • Kiley P., et al. Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. PLoS Biol. 2005, 3:e230.
    • (2005) PLoS Biol. , vol.3
    • Kiley, P.1
  • 74
    • 33845230242 scopus 로고    scopus 로고
    • Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin
    • Zhao X., et al. Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:17707-17712.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 17707-17712
    • Zhao, X.1
  • 75
    • 79959357733 scopus 로고    scopus 로고
    • Peptide surfactants for cell-free production of functional G protein-coupled receptors
    • Wang X., et al. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9049-9054.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 9049-9054
    • Wang, X.1
  • 76
    • 79952158815 scopus 로고    scopus 로고
    • Natural tri- to hexapeptides self-assemble in water to amyloid beta-type fiber aggregates by unexpected alpha-helical intermediate structures
    • Hauser C.A.E., et al. Natural tri- to hexapeptides self-assemble in water to amyloid beta-type fiber aggregates by unexpected alpha-helical intermediate structures. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:1361-1366.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 1361-1366
    • Hauser, C.A.E.1
  • 77
    • 79958780734 scopus 로고    scopus 로고
    • Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering
    • Mishra A., et al. Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today 2011, 6:232-239.
    • (2011) Nano Today , vol.6 , pp. 232-239
    • Mishra, A.1
  • 78
    • 80053200885 scopus 로고    scopus 로고
    • Ultrasmall peptides self-assemble into diverse nanostructures: morphological evaluation and potential implications
    • Lakshmanan A., Hauser C.A.E. Ultrasmall peptides self-assemble into diverse nanostructures: morphological evaluation and potential implications. Int. J. Mol. Sci. 2011, 12:5736-5746.
    • (2011) Int. J. Mol. Sci. , vol.12 , pp. 5736-5746
    • Lakshmanan, A.1    Hauser, C.A.E.2
  • 79
    • 67549083305 scopus 로고    scopus 로고
    • Production of self-assembling biomaterials for tissue engineering
    • Kyle S., et al. Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol. 2009, 27:423-433.
    • (2009) Trends Biotechnol. , vol.27 , pp. 423-433
    • Kyle, S.1
  • 80
    • 60649096673 scopus 로고    scopus 로고
    • Self-assembling materials for therapeutic delivery
    • Branco M.C., Schneider J.P. Self-assembling materials for therapeutic delivery. Acta Biomater. 2009, 5:817-831.
    • (2009) Acta Biomater. , vol.5 , pp. 817-831
    • Branco, M.C.1    Schneider, J.P.2
  • 81
    • 78149405921 scopus 로고    scopus 로고
    • Recombinant self-assembling peptides as biomaterials for tissue engineering
    • Kyle S., et al. Recombinant self-assembling peptides as biomaterials for tissue engineering. Biomaterials 2010, 31:9395-9405.
    • (2010) Biomaterials , vol.31 , pp. 9395-9405
    • Kyle, S.1
  • 82
    • 79961211353 scopus 로고    scopus 로고
    • Nanomechanics of functional and pathological amyloid materials
    • Knowles T.P.J., Buehler M.J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 2011, 6:469-479.
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 469-479
    • Knowles, T.P.J.1    Buehler, M.J.2
  • 83
    • 77955795393 scopus 로고    scopus 로고
    • More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials
    • Woolfson D.N., Mahmoud Z.N. More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials. Chem. Soc. Rev. 2010, 39:3464-3479.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 3464-3479
    • Woolfson, D.N.1    Mahmoud, Z.N.2
  • 84
    • 33846054061 scopus 로고    scopus 로고
    • Disrupting beta-amyloid aggregation for Alzheimer disease treatment
    • Estrada L.D., Soto C. Disrupting beta-amyloid aggregation for Alzheimer disease treatment. Curr. Top. Med. Chem. 2007, 7:115-126.
    • (2007) Curr. Top. Med. Chem. , vol.7 , pp. 115-126
    • Estrada, L.D.1    Soto, C.2
  • 85
    • 79960034482 scopus 로고    scopus 로고
    • Micro-" factory" for self-assembled peptide nanostructures
    • Castillo-Leon J., et al. Micro-" factory" for self-assembled peptide nanostructures. Microelectron. Eng. 2011, 88:1685-1688.
    • (2011) Microelectron. Eng. , vol.88 , pp. 1685-1688
    • Castillo-Leon, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.