메뉴 건너뛰기




Volumn , Issue , 2012, Pages 633-642

A large-scale sentiment analysis for Yahoo! Answers

Author keywords

Attitude; Collaborative question answering; Prediction; Sentiment analysis; Sentimentality

Indexed keywords

ATTITUDE; COMMERCIAL APPLICATIONS; QUESTION ANSWERING; RESEARCH TOPICS; SENTIMENT ANALYSIS; SENTIMENTALITY; WEB DOCUMENT; ZIP CODE;

EID: 84858019607     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2124295.2124371     Document Type: Conference Paper
Times cited : (132)

References (29)
  • 1
    • 46249095180 scopus 로고    scopus 로고
    • Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums
    • A. Abbasi, H. Chen, and A. Salem. Sentiment analysis in multiple languages: feature selection for opinion classification in Web forums. ACM Trans. Inf. Syst., 26:12:1-12:34, 2008.
    • (2008) ACM Trans. Inf. Syst. , vol.26 , pp. 1201-1234
    • Abbasi, A.1    Chen, H.2    Salem, A.3
  • 2
    • 79151485435 scopus 로고    scopus 로고
    • Predicting consumer sentiments from online text
    • X. Bai. Predicting consumer sentiments from online text. Decis. Support Syst., 50:732-742, 2011.
    • (2011) Decis. Support Syst. , vol.50 , pp. 732-742
    • Bai, X.1
  • 4
    • 85185605325 scopus 로고    scopus 로고
    • Determining the public mood state by analysis of microblogging posts
    • J. Bollen, H. Mao, and A. Pepe. Determining the public mood state by analysis of microblogging posts. In Proc. Alife XII Conf., pages 667-668, 2010.
    • (2010) Proc. Alife XII Conf. , pp. 667-668
    • Bollen, J.1    Mao, H.2    Pepe, A.3
  • 5
    • 79953102821 scopus 로고    scopus 로고
    • Twitter mood predicts the stock market
    • J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. J. Comput. Sci, 2:1-8, 2011.
    • (2011) J. Comput. Sci , vol.2 , pp. 1-8
    • Bollen, J.1    Mao, H.2    Zeng, X.3
  • 7
    • 38549141929 scopus 로고    scopus 로고
    • Yahoo! for amazon: Sentiment extraction from small talk on the Web
    • DOI 10.1287/mnsc.1070.0704
    • S. R. Das and M. Y. Chen. Yahoo! for Amazon: sentiment extraction from small talk on the Web. Manage. Sci., 53:1375-1388, 2007. (Pubitemid 351159590)
    • (2007) Management Science , vol.53 , Issue.9 , pp. 1375-1388
    • Das, S.R.1    Chen, M.Y.2
  • 8
    • 9444244198 scopus 로고    scopus 로고
    • Mining the peanut gallery: Opinion extraction and semantic classification of product reviews
    • K. Dave, S. Lawrence, and D. M. Pennock. Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In Proc. 12th Int'l Conf. World Wide Web, pages 519-528, 2003.
    • (2003) Proc. 12th Int'l Conf. World Wide Web , pp. 519-528
    • Dave, K.1    Lawrence, S.2    Pennock, D.M.3
  • 10
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. H. Friedman. Greedy function approximation: a gradient boosting machine. Ann. Stat., 29(5):1189-1232, 2001. (Pubitemid 33405972)
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 18
    • 48449095896 scopus 로고    scopus 로고
    • Opinion mining and sentiment analysis
    • B. Pang and L. Lee. Opinion mining and sentiment analysis. Found. Trends Inf. Retr., 2:1-135, 2008.
    • (2008) Found. Trends Inf. Retr. , vol.2 , pp. 1-135
    • Pang, B.1    Lee, L.2
  • 20
    • 77953602186 scopus 로고    scopus 로고
    • Emotion homophily in social network site messages
    • M. Thelwall. Emotion homophily in social network site messages. First Monday, 15(4-5), 2010.
    • (2010) First Monday , vol.15 , Issue.4-5
    • Thelwall, M.1
  • 23
    • 72849107485 scopus 로고    scopus 로고
    • Data mining emotion in social network communication: Gender differences in MySpace
    • M. Thelwall, D. Wilkinson, and S. Uppal. Data mining emotion in social network communication: gender differences in MySpace. J. Am. Soc. Inf. Sci. Technol., 61(1):190-199, 2010.
    • (2010) J. Am. Soc. Inf. Sci. Technol. , vol.61 , Issue.1 , pp. 190-199
    • Thelwall, M.1    Wilkinson, D.2    Uppal, S.3
  • 24
    • 80053357527 scopus 로고    scopus 로고
    • Get out the vote: Determining support or opposition from congressional floor-debate transcripts
    • M. Thomas, B. Pang, and L. Lee. Get out the vote: determining support or opposition from congressional floor-debate transcripts. In Proc. Conf. Empirical Methods in Natural Language Processing, pages 327-335, 2006.
    • (2006) Proc. Conf. Empirical Methods in Natural Language Processing , pp. 327-335
    • Thomas, M.1    Pang, B.2    Lee, L.3
  • 25
    • 85136072040 scopus 로고    scopus 로고
    • Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews
    • P. D. Turney. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In Proc. 40th Annual Meeting on Assoc. for Computational Linguistics, pages 417-424, 2002.
    • (2002) Proc. 40th Annual Meeting on Assoc. for Computational Linguistics , pp. 417-424
    • Turney, P.D.1
  • 28
    • 29344473560 scopus 로고    scopus 로고
    • Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques
    • J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack. Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques. In Proc. 3rd IEEE Int'l Conf. Data Mining, pages 427-434, 2003.
    • (2003) Proc. 3rd IEEE Int'l Conf. Data Mining , pp. 427-434
    • Yi, J.1    Nasukawa, T.2    Bunescu, R.3    Niblack, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.