메뉴 건너뛰기




Volumn 28, Issue 2, 2012, Pages 141-158

A particle swarm-optimized support vector machine for reliability prediction

Author keywords

particle swarm optimization; reliability prediction; support vector machines

Indexed keywords

BIOLOGICAL ORGANISMS; COLLECTIVE MOTIONS; DATA SETS; ENGINEERED COMPONENTS; ENVIRONMENTAL CONDITIONS; OPTIMIZATION PROBLEMS; PREDICTION ERRORS; PREDICTION METHODS; PREDICTION PERFORMANCE; PROBABILISTIC APPROACHES; RELIABILITY BEHAVIOR; RELIABILITY PREDICTION; STOCHASTIC MODELING; STRUCTURAL AGING; SUPPORT VECTOR; SVM MODEL; SYSTEM RELIABILITY; TIME SERIES TECHNIQUES; TIME-SERIES DATA;

EID: 84857637199     PISSN: 07488017     EISSN: 10991638     Source Type: Journal    
DOI: 10.1002/qre.1221     Document Type: Article
Times cited : (75)

References (53)
  • 2
    • 78049382078 scopus 로고    scopus 로고
    • Multiobjective optimization of redundancy allocation problems in systems with imperfect repairs via ant colony and discrete event simulation
    • Valencia, Spain
    • Lins ID, Droguett EL,. Multiobjective optimization of redundancy allocation problems in systems with imperfect repairs via ant colony and discrete event simulation. European Safety & Reliability Conference (ESREL), Valencia, Spain, 2008.
    • (2008) European Safety & Reliability Conference (ESREL)
    • Lins, I.D.1    Droguett, E.L.2
  • 3
    • 67650503098 scopus 로고    scopus 로고
    • Multiobjective optimization of availability and cost in repairable systems design via genetic algorithms and discrete event simulation
    • DOI: 10.1590/S0101-74382009000100003
    • Lins ID, Droguett EAL,. Multiobjective optimization of availability and cost in repairable systems design via genetic algorithms and discrete event simulation. Pesquisa Operacional 2009; 29: 43-66. DOI: 10.1590/S0101- 74382009000100003.
    • (2009) Pesquisa Operacional , vol.29 , pp. 43-66
    • Lins, I.D.1    Droguett, E.A.L.2
  • 4
    • 78049385187 scopus 로고    scopus 로고
    • Redundancy allocation problems considering systems with imperfect repairs using multi-objective genetic algorithms and discrete event simulation
    • DOI: 10.1016/j.simpat.2010.07.010
    • Lins ID, Droguett EL,. Redundancy allocation problems considering systems with imperfect repairs using multi-objective genetic algorithms and discrete event simulation. Simulation Modelling Practice and Theory 2011; 19: 362-381. DOI: 10.1016/j.simpat.2010.07.010.
    • (2011) Simulation Modelling Practice and Theory , vol.19 , pp. 362-381
    • Lins, I.D.1    Droguett, E.L.2
  • 5
    • 54149084527 scopus 로고    scopus 로고
    • Mathematical formulation and numerical treatment based on transition frequency densities and quadrature methods for non-homogeneous semi-Markov processes
    • DOI: 10.1016/j.ress.2008.03.032
    • Moura MC, Droguett EL,. Mathematical formulation and numerical treatment based on transition frequency densities and quadrature methods for non-homogeneous semi-Markov processes. Reliability Engineering and System Safety 2009; 94: 342-349. DOI: 10.1016/j.ress.2008.03.032.
    • (2009) Reliability Engineering and System Safety , vol.94 , pp. 342-349
    • Moura, M.C.1    Droguett, E.L.2
  • 6
    • 0001301007 scopus 로고    scopus 로고
    • Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery
    • Zhang S, Ganesan R,. Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery. Journal of Engineering for Gas Turbines and Power 1997; 119: 378-384. DOI: 10.1115/1.2815585. (Pubitemid 127573082)
    • (1997) Journal of Engineering for Gas Turbines and Power , vol.119 , Issue.2 , pp. 378-384
    • Zhang, S.1    Ganesan, R.2
  • 7
    • 0034813955 scopus 로고    scopus 로고
    • Intelligent predictive decision support system for condition-based maintenance
    • DOI 10.1007/s001700170173
    • Yam RCM, Tse PW, Li L, Tu P,. Intelligent predictive decision support system for condition-based maintenance. International Journal of Advanced Manufacturing Technology 2001; 17: 383-391. DOI: 10.1007/s001700170173. (Pubitemid 32914802)
    • (2001) International Journal of Advanced Manufacturing Technology , vol.17 , Issue.5 , pp. 383-391
    • Yam, R.C.M.1    Tse, P.W.2    Li, L.3    Tu, P.4
  • 8
    • 2442503629 scopus 로고    scopus 로고
    • Prognosis of machine health condition using neuro-fuzzy systems
    • DOI: 10.1016/S0888-3270(03)00079-7
    • Wang WQ, Golnaraghi MF, Ismail F,. Prognosis of machine health condition using neuro-fuzzy systems. Mechanical Systems and Signal Processing 2004; 18: 813-831. DOI: 10.1016/S0888-3270(03)00079-7.
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 813-831
    • Wang, W.Q.1    Golnaraghi, M.F.2    Ismail, F.3
  • 9
    • 1542648584 scopus 로고    scopus 로고
    • A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems
    • DOI: 10.1504/IJMPT.2004.003920
    • Chinnam RB, Baruah P,. A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems. International Journal of Materials and Product Technology 2004; 20: 166-179. DOI: 10.1504/IJMPT.2004. 003920.
    • (2004) International Journal of Materials and Product Technology , vol.20 , pp. 166-179
    • Chinnam, R.B.1    Baruah, P.2
  • 10
    • 33644754758 scopus 로고    scopus 로고
    • Application of hybrid learning neural fuzzy systems in reliability prediction
    • DOI 10.1002/qre.696
    • Pai P-F, Lin K-P,. Application of hybrid learning neural fuzzy systems in reliability prediction. Quality and Reliability Enginnering International 2006; 22: 199-211. DOI: 10.1002/qre.696. (Pubitemid 43343104)
    • (2006) Quality and Reliability Engineering International , vol.22 , Issue.2 , pp. 199-211
    • Pai, P.-F.1    Lin, K.-P.2
  • 11
    • 79951889525 scopus 로고    scopus 로고
    • Artificial neural network application of modeling failure rate for Boeing 737 tires
    • DOI: 10.1002/qre.1114
    • Al-Garni AZ, Jamal A,. Artificial neural network application of modeling failure rate for Boeing 737 tires. Quality and Reliability Engineering International 2010. DOI: 10.1002/qre.1114.
    • (2010) Quality and Reliability Engineering International
    • Al-Garni, A.Z.1    Jamal, A.2
  • 17
    • 33644676683 scopus 로고    scopus 로고
    • Predicting engine reliability by support vector machines
    • DOI 10.1007/s00170-004-2340-z
    • Hong W-C, Pai P-F,. Predicting engine reliability by support vector machines. International Journal of Advanced Manufacturing Technology 2006; 28: 154-161. DOI: 10.1007/s00170-004-2340-z. (Pubitemid 43333581)
    • (2006) International Journal of Advanced Manufacturing Technology , vol.28 , Issue.1-2 , pp. 154-161
    • Hong, W.-C.1    Pai, P.-F.2
  • 18
    • 33644693593 scopus 로고    scopus 로고
    • System reliability forecasting by support vector machines with genetic algorithms
    • DOI 10.1016/j.mcm.2005.02.008, PII S0895717705004760
    • Pai P-F,. System reliability forecasting by support vector machines with genetic algorithms. Mathematical and Computer Modelling 2006; 43: 262-274. DOI: 10.1016/j.mcm.2005.02.008. (Pubitemid 43330856)
    • (2006) Mathematical and Computer Modelling , vol.43 , Issue.3-4 , pp. 262-274
    • Pai, P.-F.1
  • 19
    • 66449136989 scopus 로고    scopus 로고
    • Time series prediction using support vector machines: A survey
    • DOI: 10.1109/MCI.2009.932254
    • Sapankevych NI, Sankar R,. Time series prediction using support vector machines: a survey. IEEE Computational Intelligence Magazine 2009; 4: 24-38. DOI: 10.1109/MCI.2009.932254.
    • (2009) IEEE Computational Intelligence Magazine , vol.4 , pp. 24-38
    • Sapankevych, N.I.1    Sankar, R.2
  • 20
    • 24944444628 scopus 로고    scopus 로고
    • Application research of support vector machines in condition trend prediction of mechanical equipment
    • Advances in Neural Networks - ISNN 2005: Second International Symposium on Neural Networks. Proceedings
    • Yang J, Zhang Y,. Application research of support vector machines in condition trend prediction of mechanical equipment. Lecture Notes in Computer Science 2005; 3498: 857-864. DOI: 10.1007/11427469-136. (Pubitemid 41315189)
    • (2005) Lecture Notes in Computer Science , vol.3498 , Issue.3 , pp. 857-864
    • Yang, J.1    Zhang, Y.2
  • 21
    • 26844490984 scopus 로고    scopus 로고
    • Recurrent support vector machines in reliability prediction
    • Advances in Natural Computation: First International Conference, ICNC 2005. Proceedings
    • Hong W-C, Pai P-F, Chen C-T, Chang P-T,. Recurrent support vector machines in reliability prediction. Lecture Notes in Computer Science 2005; 3610: 619-629. DOI: 10.1007/11539087. (Pubitemid 41449961)
    • (2005) Lecture Notes in Computer Science , vol.3610 , Issue.PART I , pp. 619-629
    • Hong, W.-C.1    Pai, P.-F.2    Chen, C.-T.3    Chang, P.-T.4
  • 22
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • DOI 10.1109/72.991427, PII S1045922702018052
    • Hsu C-W, Lin C-J,. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 2002; 13: 415-425. DOI: 10.1109/72.991427. (Pubitemid 34475042)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 23
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • DOI: 10.1162/089976600300015042
    • Vapnik VN, Chapelle O,. Bounds on error expectation for support vector machines. Neural Computation 2000; 12: 2013-2036. DOI: 10.1162/ 089976600300015042.
    • (2000) Neural Computation , vol.12 , pp. 2013-2036
    • Vapnik, V.N.1    Chapelle, O.2
  • 24
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • Chapelle O, Vapnik VN, Bousquet O, Mukherjee S,. Choosing multiple parameters for support vector machines. Machine Learning 2002; 46: 131-159. DOI: 10.1023/A:1012450327387. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 25
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • DOI 10.1016/j.enconman.2005.02.004, PII S0196890405000506
    • Pai P-F, Hong W-C,. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management 2005; 46: 2669-2688. DOI: 10.1016/j.enconman.2005.02.004. (Pubitemid 40654933)
    • (2005) Energy Conversion and Management , vol.46 , Issue.17 , pp. 2669-2688
    • Pai, P.-F.1    Hong, W.-C.2
  • 26
    • 33646130599 scopus 로고    scopus 로고
    • Software reliability forecasting by support vector machines with simulated annealing algorithms
    • DOI: 10.1016/j.jss.2005.02.025
    • Pai P-F, Hong W-C,. Software reliability forecasting by support vector machines with simulated annealing algorithms. Journal of Systems and Software 2006; 79: 747-755. DOI: 10.1016/j.jss.2005.02.025.
    • (2006) Journal of Systems and Software , vol.79 , pp. 747-755
    • Pai, P.-F.1    Hong, W.-C.2
  • 27
    • 33845633182 scopus 로고    scopus 로고
    • Forecasting systems reliability based on support vector regression with genetic algorithms
    • DOI 10.1016/j.ress.2005.12.014, PII S0951832006000147
    • Chen K-Y,. Forecasting systems reliability based on support vector regression with genetic algorithms. Reliability Engineering and System Safety 2007; 92: 423-432. DOI: 10.1016/j.ress.2005.12.014. (Pubitemid 44959904)
    • (2007) Reliability Engineering and System Safety , vol.92 , Issue.4 , pp. 423-432
    • Chen, K.-Y.1
  • 28
    • 33748695973 scopus 로고    scopus 로고
    • Support vector regression with genetic algorithms in forecasting tourism demand
    • DOI 10.1016/j.tourman.2005.12.018, PII S0261517706000033
    • Chen K-Y, Wang C-H,. Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management 2007; 28: 215-226. DOI: 10.1016/j.tourman.2005.12.018. (Pubitemid 44391271)
    • (2007) Tourism Management , vol.28 , Issue.1 , pp. 215-226
    • Chen, K.-Y.1    Wang, C.-H.2
  • 29
    • 77957929022 scopus 로고    scopus 로고
    • A multi-objective artificial immune algorithm for parameter optimization in support vector machine
    • DOI: 10.1016/j.asoc.2009.11.003
    • Aydin I, Karakose M, Akin E,. A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Applied Soft Computing 2011; 11: 120-129. DOI: 10.1016/j.asoc.2009.11.003.
    • (2011) Applied Soft Computing , vol.11 , pp. 120-129
    • Aydin, I.1    Karakose, M.2    Akin, E.3
  • 31
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • DOI: 10.1016/j.eswa.2007.08.088
    • Lin S-W, Ying K-C, Chen S-C, Lee Z-J,. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications 2008; 35: 1817-1824. DOI: 10.1016/j.eswa.2007.08.088.
    • (2008) Expert Systems with Applications , vol.35 , pp. 1817-1824
    • Lin, S.-W.1    Ying, K.-C.2    Chen, S.-C.3    Lee, Z.-J.4
  • 32
    • 64649086616 scopus 로고    scopus 로고
    • Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil
    • DOI: 10.1016/j.enconman.2009.02.004
    • Fei S-W, Wang M-J, Miao Y-B, Tu J, Liu C-L,. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil. Energy Conversion and Management 2009; 50: 1604-1609. DOI: 10.1016/j.enconman.2009.02.004.
    • (2009) Energy Conversion and Management , vol.50 , pp. 1604-1609
    • Fei, S.-W.1    Wang, M.-J.2    Miao, Y.-B.3    Tu, J.4    Liu, C.-L.5
  • 33
    • 55749112476 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    • DOI: 10.1016/j.enconman.2008.08.031
    • Hong W-C,. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Conversion and Management 2009; 50: 105-117. DOI: 10.1016/j.enconman.2008.08.031.
    • (2009) Energy Conversion and Management , vol.50 , pp. 105-117
    • Hong, W.-C.1
  • 34
    • 58949102919 scopus 로고    scopus 로고
    • Use of particle swarm optimization for machinery fault detection
    • DOI: 10.1016/j.engappai.2008.07.006
    • Samanta B, Nataraj C,. Use of particle swarm optimization for machinery fault detection. Engineering Applications of Artificial Intelligence 2009; 22: 308-316. DOI: 10.1016/j.engappai.2008.07.006.
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , pp. 308-316
    • Samanta, B.1    Nataraj, C.2
  • 35
    • 33847059431 scopus 로고    scopus 로고
    • Support vector machines-An introduction
    • Wang L. (ed.). Springer: Berlin
    • Kecman V,. Support vector machines-An introduction. In Support Vector Machines: Theory and Applications, Wang L, (ed.). Springer: Berlin, 2005; 1-47.
    • (2005) Support Vector Machines: Theory and Applications , pp. 1-47
    • Kecman, V.1
  • 38
    • 0027232319 scopus 로고
    • The parsimony principle applied to multivariate calibration
    • DOI 10.1016/0003-2670(93)80430-S
    • Seasholtza MB, Kowalski B,. The parsimony principle applied to multivariate calibration. Analytica Chimica Acta 1993; 277: 165-177. DOI: 10.1016/0003-2670(93)80430-S. (Pubitemid 23157995)
    • (1993) Analytica Chimica Acta , vol.277 , Issue.2 , pp. 165-177
    • Seasholtz, M.B.1    Kowalski, B.2
  • 40
    • 3843050541 scopus 로고    scopus 로고
    • A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods
    • National Taiwan University
    • Lin H-T, Lin C-J,. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Technical Report, Department of Computer Science, National Taiwan University, 2003.
    • (2003) Technical Report, Department of Computer Science
    • Lin, H.-T.1    Lin, C.-J.2
  • 43
    • 17444398555 scopus 로고    scopus 로고
    • Leave-one-out bounds for support vector regression model selection
    • DOI 10.1162/0899766053491869
    • Chang M-W, Lin C-J,. Leave-one-out bounds for support vector regression model selection. Neural Computation 2005; 17: 1188-1222. DOI: 10.1162/0899766053491869. (Pubitemid 40551618)
    • (2005) Neural Computation , vol.17 , Issue.5 , pp. 1188-1222
    • Chang, M.-W.1    Lin, C.-J.2
  • 47
    • 15944420505 scopus 로고    scopus 로고
    • Application of neural networks in forecasting engine systems reliability
    • DOI 10.1016/S1568-4946(02)00059-5, PII S1568494602000595
    • Xu K, Xie M, Tang LC, Ho SL,. Application of neural networks in forecasting engine systems reliability. Applied Soft Computing 2003; 2: 255-268. DOI: 10.1016/S1568-4946(02)00059-5. (Pubitemid 40442502)
    • (2003) Applied Soft Computing Journal , vol.2 , Issue.4 , pp. 255-268
    • Xu, K.1    Xie, M.2    Tang, L.C.3    Ho, S.L.4
  • 53
    • 0037365040 scopus 로고    scopus 로고
    • Soft computing and hybrid approaches: An introduction to this special issue
    • DOI: 10.1016/S0020-0255(02)00365-1
    • John R,. Soft computing and hybrid approaches: an introduction to this special issue. Information Sciences 2003; 150: 1-3. DOI: 10.1016/S0020-0255(02) 00365-1.
    • (2003) Information Sciences , vol.150 , pp. 1-3
    • John, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.