메뉴 건너뛰기




Volumn , Issue , 2011, Pages 159-168

A framework for capturing distinguishing user interaction behaviours in novel interfaces

Author keywords

Associative Rule Mining; Clustering; Student Modeling

Indexed keywords

ADAPTIVE INTERACTION; ASSOCIATIVE RULE; CLUSTERING; EDUCATIONAL SOFTWARE; LONG-TERM GOALS; MODELING PROCESS; PROOF OF CONCEPT; STUDENT MODELING; UNSUPERVISED CLUSTERING; USER INTERACTION; USER MODELING;

EID: 84857492059     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (44)

References (20)
  • 1
    • 77957286385 scopus 로고    scopus 로고
    • Combining unsupervised and supervised machine learning to build user models for exploratory learning environments
    • AMERSHI, S. AND CONATI, C. 2009. Combining Unsupervised and Supervised Machine Learning to Build User Models for Exploratory Learning Environments. J. of Educational Data Mining 1, 1, 2.
    • (2009) J. of Educational Data Mining , vol.1 , Issue.1 , pp. 2
    • Amershi, S.1    Conati, C.2
  • 2
    • 37249012883 scopus 로고    scopus 로고
    • Pedagogy and usability in interactive algorithm visualizations - designing and evaluating cispace
    • AMERSHI, S., CARENINI, G., CONATI, C., MACKWORTH, A. AND POOLE, D. 2008. Pedagogy and Usability in Interactive Algorithm Visualizations - Designing and Evaluating CIspace. Interact Comput. 20, 1, 64-96.
    • (2008) Interact Comput. , vol.20 , Issue.1 , pp. 64-96
    • Amershi, S.1    Carenini, G.2    Conati, C.3    Mackworth, A.4    Poole, D.5
  • 3
    • 79957481240 scopus 로고    scopus 로고
    • Discovering and recognizing student interaction patterns in exploratory learning environments
    • Springer
    • BERNARDINI, A., AND CONATI, C. 2010. Discovering and Recognizing Student Interaction Patterns in Exploratory Learning Environments. Proc. ITS2010, Springer, 125-134.
    • (2010) Proc. ITS2010 , pp. 125-134
    • Bernardini, A.1    Conati, C.2
  • 4
    • 0035340352 scopus 로고    scopus 로고
    • Mining association rules procedure to support on-line recommendation by customers and products fragmentation
    • CHANGCHIEN, S.W., AND LU, T. 2001. Mining association rules procedure to support on-line recommendation by customers and products fragmentation. Expert Systems with Applications 20, 325-335.
    • (2001) Expert Systems with Applications , vol.20 , pp. 325-335
    • Changchien, S.W.1    Lu, T.2
  • 7
    • 58849083276 scopus 로고    scopus 로고
    • An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering
    • GARCÍA, E., ROMERO, C., VENTURA, S., AND CASTRO, C. D. 2009. An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering. UMUAI 19, 99-132.
    • (2009) UMUAI , vol.19 , pp. 99-132
    • García, E.1    Romero, C.2    Ventura, S.3    Castro, C.D.4
  • 8
    • 33749319347 scopus 로고    scopus 로고
    • Interestingness measures for data mining: A survey
    • GENG, L., AND HAMILTON, H. J. 2006. Interestingness measures for data mining: A survey. ACM Comput. Surv. 38, 3, 9.
    • (2006) ACM Comput. Surv. , vol.38 , Issue.3 , pp. 9
    • Geng, L.1    Hamilton, H.J.2
  • 11
    • 36148984621 scopus 로고    scopus 로고
    • A recommender system using GA k-means clustering in an online shopping market
    • KIM, K. AND AHN, H. 2008. A recommender system using GA k-means clustering in an online shopping market. Expert Syst. Appl. 34, 2, 1200-1209.
    • (2008) Expert Syst. Appl. , vol.34 , Issue.2 , pp. 1200-1209
    • Kim, K.1    Ahn, H.2
  • 12
    • 79955827700 scopus 로고    scopus 로고
    • Activity sequence modelling and dynamic clustering for personalized elearning
    • KÖCK, M., PARAMYTHIS, A. 2011. Activity sequence modelling and dynamic clustering for personalized elearning. User Model User-Adap Inter 21:51-97.
    • (2011) User Model User-Adap Inter , vol.21 , pp. 51-97
    • Köck, M.1    Paramythis, A.2
  • 13
    • 0001267179 scopus 로고    scopus 로고
    • Mining association rules with multiple minimum supports
    • ACM
    • LIU, B., HSU, W., AND MA, Y. 1999. Mining association rules with multiple minimum supports. In Proc. KDD '99. ACM, 337-341.
    • (1999) Proc. KDD '99 , pp. 337-341
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 14
    • 14544270058 scopus 로고    scopus 로고
    • A web-based tutoring tool with mining facilities to Improve Teaching and Learning
    • 2003
    • MERCERON A., AND YACEF K. 2003. A web-based tutoring tool with mining facilities to Improve Teaching and Learning, AIED 2003, 201-208.
    • (2003) AIED , pp. 201-208
    • Merceron, A.1    Yacef, K.2
  • 15
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • MILLIGAN G. W., AND COOPER, M. C. 1985. An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50, 2, 159-179.
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 16
    • 67650245090 scopus 로고    scopus 로고
    • Applying web usage mining for personalizing hyperlinks in Web-based adaptive educational systems
    • ROMERO, C., VENTURA, S., ZAFRA, A., AND DE BRA, P. 2009. Applying Web usage mining for personalizing hyperlinks in Web-based adaptive educational systems. Comput. Educ. 53, 3, 828-840.
    • (2009) Comput. Educ. , vol.53 , Issue.3 , pp. 828-840
    • Romero, C.1    Ventura, S.2    Zafra, A.3    De Bra, P.4
  • 17
    • 84857478946 scopus 로고    scopus 로고
    • Identifying high-level student behaviour using sequence-based motif discovery
    • SHANABROOK, D. H., COOPER, D. G., WOOLF, B. P., ARROYO, I. 2010. Identifying High-Level Student Behaviour Using Sequence-based Motif Discovery. In Proceedings of EDM'2010.191-200.
    • (2010) Proceedings of EDM'2010 , pp. 191-200
    • Shanabrook, D.H.1    Cooper, D.G.2    Woolf, B.P.3    Arroyo, I.4
  • 18
    • 34249687044 scopus 로고    scopus 로고
    • A review of associative classification mining
    • THABTAH, F. 2007. A review of associative classification mining. Knowl. Eng. Rev. 22, 1, 37-65.
    • (2007) Knowl. Eng. Rev. , vol.22 , Issue.1 , pp. 37-65
    • Thabtah, F.1
  • 20
    • 33846434437 scopus 로고    scopus 로고
    • An associative classification-based recommendation system for personalization in B2C e-commerce applications
    • ZHANGA, Y., AND JIAO, J. 2007. An associative classification-based recommendation system for personalization in B2C e-commerce applications, Expert Syst. Appl. 33, 2, 357-367.
    • (2007) Expert Syst. Appl. , vol.33 , Issue.2 , pp. 357-367
    • Zhanga, Y.1    Jiao, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.