메뉴 건너뛰기




Volumn , Issue , 2011, Pages 149-158

Learning classifiers from a relational database of tutor logs

Author keywords

[No Author keywords available]

Indexed keywords

DATABASE QUERIES; EVENT STREAMS; FEATURE VECTORS; LABOR INTENSIVE PROCESS; LEARNING CLASSIFIERS; RELATIONAL DATABASE;

EID: 84857468668     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (14)
  • 2
    • 0002428766 scopus 로고
    • Learning to classify English text with ILP methods
    • COHEN, W. 1995. Learning to classify English text with ILP methods. Advances in inductive logic programming, 124-143.
    • (1995) Advances in Inductive Logic Programming , pp. 124-143
    • Cohen, W.1
  • 3
    • 84857496132 scopus 로고    scopus 로고
    • Predicting task completion from rich but scarce data
    • Pittsburgh, PA, June 11-13, 2010, R.S.J.D. BAKER, A. MERCERON and P.I.J. PAVLIK, Eds
    • GONZÁLEZ-BRENES, J.P. and MOSTOW, J. 2010. Predicting Task Completion from Rich but Scarce Data. In Proceedings of the 3rd International Conference on Educational Data Mining, Pittsburgh, PA, June 11-13, 2010, R.S.J.D. BAKER, A. MERCERON and P.I.J. PAVLIK, Eds., 291-292.
    • (2010) Proceedings of the 3rd International Conference on Educational Data Mining , pp. 291-292
    • González-Brenes, J.P.1    Mostow, J.2
  • 4
    • 0002241067 scopus 로고
    • Machine transformation of advice into a heuristic search procedure
    • R.S. MICHALSKI, J.G. CARBONELL and T.M. MITCHELL, Eds. Tioga, Palo Alto, CA
    • MOSTOW, D.J. 1983. Machine transformation of advice into a heuristic search procedure. In Machine Learning, R.S. MICHALSKI, J.G. CARBONELL and T.M. MITCHELL, Eds. Tioga, Palo Alto, CA, 367-403.
    • (1983) Machine Learning , pp. 367-403
    • Mostow, D.J.1
  • 5
    • 0001103769 scopus 로고    scopus 로고
    • Giving help and praise in a reading tutor with imperfect listening - because automated speech recognition means never being able to say you're certain
    • MOSTOW, J. and AIST, G. 1999. Giving help and praise in a reading tutor with imperfect listening - because automated speech recognition means never being able to say you're certain. CALICO Journal 16(3), 407-424.
    • (1999) CALICO Journal , vol.16 , Issue.3 , pp. 407-424
    • Mostow, J.1    Aist, G.2
  • 8
    • 80052007407 scopus 로고    scopus 로고
    • Lessons from project LISTEN's session browser
    • C. ROMERO, S. VENTURA, S.R. VIOLA, M. PECHENIZKIY and R.S.J.D. BAKER, Eds. CRC Press, Taylor & Francis Group, New York
    • MOSTOW, J., BECK, J.E., CUNEO, A., GOUVEA, E., HEINER, C. and JUAREZ, O. 2010. Lessons from Project LISTEN's Session Browser. In Handbook of Educational Data Mining, C. ROMERO, S. VENTURA, S.R. VIOLA, M. PECHENIZKIY and R.S.J.D. BAKER, Eds. CRC Press, Taylor & Francis Group, New York, 389-416.
    • (2010) Handbook of Educational Data Mining , pp. 389-416
    • Mostow, J.1    Beck, J.E.2    Cuneo, A.3    Gouvea, E.4    Heiner, C.5    Juarez, O.6
  • 9
    • 84857494908 scopus 로고    scopus 로고
    • AutoJoin: Generalizing an Example into an EDM query
    • Pittsburgh, PA, June 11-13, 2010, R.S.J.D. BAKER, A. MERCERON and P.I.J. PAVLIK, Eds
    • MOSTOW, J. and TAN, B.H.L. 2010. AutoJoin: Generalizing an Example into an EDM query. In Proceedings of the 3rd International Conference on Educational Data Mining, Pittsburgh, PA, June 11-13, 2010, R.S.J.D. BAKER, A. MERCERON and P.I.J. PAVLIK, Eds., 307-308.
    • (2010) Proceedings of the 3rd International Conference on Educational Data Mining , pp. 307-308
    • Mostow, J.1    Tan, B.H.L.2
  • 10
    • 77951503082 scopus 로고
    • Inverse entailment and progol
    • 2004. Online MySQL Documentation at
    • MUGGLETON, S. 1995. Inverse entailment and progol. New Generation Computing 13(3), 245-286. MYSQL 2004. Online MySQL Documentation at http://dev.mysql.com/doc/mysql.
    • (1995) New Generation Computing , vol.13 , Issue.3 , pp. 245-286
    • Muggleton, S.1
  • 11
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • PROVOST, F. and KOLLURI, V. 1999. A Survey of Methods for Scaling Up Inductive Algorithms. Data Mining and Knowledge Discovery 3(2), 131-169.
    • (1999) Data Mining and Knowledge Discovery , vol.3 , Issue.2 , pp. 131-169
    • Provost, F.1    Kolluri, V.2
  • 12
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • QUINLAN, J.R. 1990. Learning logical definitions from relations. Machine Learning 5(3), 239-266.
    • (1990) Machine Learning , vol.5 , Issue.3 , pp. 239-266
    • Quinlan, J.R.1
  • 13
    • 53749100576 scopus 로고    scopus 로고
    • Combining statistical and relational methods for learning in hypertext domains
    • SLATTERY, S. and CRAVEN, M. 1998. Combining statistical and relational methods for learning in hypertext domains. Inductive Logic Programming, 38-52.
    • (1998) Inductive Logic Programming , pp. 38-52
    • Slattery, S.1    Craven, M.2
  • 14
    • 33745120787 scopus 로고    scopus 로고
    • CrossMine: Efficient classification across multiple database relations
    • Lecture Notes in Computer Science, J.-F. BOULICAUT, L. DE RAEDT and H. MANNILA, Eds. Springer Berlin/Heidelberg
    • YIN, X., HAN, J., YANG, J. and YU, P. 2006. CrossMine: Efficient Classification Across Multiple Database Relations. In Constraint-Based Mining and Inductive Databases. Lecture Notes in Computer Science, J.-F. BOULICAUT, L. DE RAEDT and H. MANNILA, Eds. Springer Berlin/Heidelberg, 172-195.
    • (2006) Constraint-Based Mining and Inductive Databases , pp. 172-195
    • Yin, X.1    Han, J.2    Yang, J.3    Yu, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.