메뉴 건너뛰기




Volumn 47, Issue 1, 2012, Pages 178-187

Predicting torsional strength of RC beams by using Evolutionary Polynomial Regression

Author keywords

Building code; Evolutionary Polynomial Regression; Reinforced concrete beam; Soft computing; Theoretical model; Torsional strength

Indexed keywords

CONCRETE BUILDINGS; GENETIC PROGRAMMING; MODELS; POLYNOMIALS; REGRESSION ANALYSIS; REINFORCED CONCRETE; REINFORCEMENT; SOFT COMPUTING;

EID: 84857196294     PISSN: 09659978     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.advengsoft.2011.11.001     Document Type: Article
Times cited : (39)

References (41)
  • 1
    • 77952351312 scopus 로고    scopus 로고
    • Genetic-programming based modeling of RC beam torsional strength
    • A. Cevik, M.H. Arslan, and M.A. Köroglu Genetic-programming based modeling of RC beam torsional strength KSCE J Civil Eng 14 3 2010 371 384
    • (2010) KSCE J Civil Eng , vol.14 , Issue.3 , pp. 371-384
    • Cevik, A.1    Arslan, M.H.2    Köroglu, M.A.3
  • 2
    • 77955472158 scopus 로고    scopus 로고
    • Predicting of torsional strength of RC beams by using different artificial neural network algorithms and building codes
    • M.H. Arslan Predicting of torsional strength of RC beams by using different artificial neural network algorithms and building codes Adv Eng Softw 41 2010 946 955
    • (2010) Adv Eng Softw , vol.41 , pp. 946-955
    • Arslan, M.H.1
  • 4
    • 0037370619 scopus 로고    scopus 로고
    • Neural network applications in concrete structures
    • M.N.S. Hadi Neural network applications in concrete structures Comput Struct 81 6 2003 373 381
    • (2003) Comput Struct , vol.81 , Issue.6 , pp. 373-381
    • Hadi, M.N.S.1
  • 5
    • 33846309276 scopus 로고    scopus 로고
    • Modeling ultimate deformation capacity of RC columns using artificial neural networks
    • DOI 10.1016/j.engstruct.2006.05.001, PII S0141029606002033
    • M. Inel Modeling ultimate deformation capacity of RC columns using artificial neural networks Eng Struct 29 3 2007 329 335 (Pubitemid 46118043)
    • (2007) Engineering Structures , vol.29 , Issue.3 , pp. 329-335
    • Inel, M.1
  • 6
    • 0035388101 scopus 로고    scopus 로고
    • Neural network design for engineering applications
    • DOI 10.1016/S0045-7949(01)00039-6, PII S0045794901000396
    • M.Y. Rafiq, G. Bugmann, and D.J. Easterbrook Neural network design for engineering applications Comput Struct 79 17 2001 1541 1552 (Pubitemid 32833069)
    • (2001) Computers and Structures , vol.79 , Issue.17 , pp. 1541-1552
    • Rafiq, M.Y.1    Bugmann, G.2    Easterbrook, D.J.3
  • 9
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modelling
    • DOI 10.1623/hysj.50.3.439.65025
    • O. Giustolisi, and D. Laucelli Increasing generalisation of input-output artificial neural networks in rainfall-runoff modelling Hydrol Sci J 50 3 2005 439 457 10.1623/hysj.50.3.439.65025 (Pubitemid 40865143)
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 11
    • 0037361782 scopus 로고    scopus 로고
    • Symbolic and numerical regression: Experiments and applications
    • 10.1016/S0020-0255(02)00371-7
    • J.W. Davidson, D.A. Savic, and G.A. Walters Symbolic and numerical regression: experiments and applications Inform Sci 150 2003 95 117 10.1016/S0020-0255(02)00371-7
    • (2003) Inform Sci , vol.150 , pp. 95-117
    • Davidson, J.W.1    Savic, D.A.2    Walters, G.A.3
  • 12
    • 0032241894 scopus 로고    scopus 로고
    • Effects of code growth and parsimony pressure on populations in genetic programming
    • T. Soule, and J.A. Foster Effects of code growth and parsimony pressure on populations in genetic programming Evolution Comput 6 4 1999 293 309
    • (1999) Evolution Comput , vol.6 , Issue.4 , pp. 293-309
    • Soule, T.1    Foster, J.A.2
  • 13
    • 33744791952 scopus 로고    scopus 로고
    • A symbolic data-driven technique based on evolutionary polynomial regression
    • 10.2166/hydro.2006.020
    • O. Giustolisi, and D.A. Savic A symbolic data-driven technique based on evolutionary polynomial regression J Hydroinform 8 3 2006 207 222 10.2166/hydro.2006.020
    • (2006) J Hydroinform , vol.8 , Issue.3 , pp. 207-222
    • Giustolisi, O.1    Savic, D.A.2
  • 14
    • 70249122802 scopus 로고    scopus 로고
    • Application of artificial intelligence and data mining techniques in soil modelling
    • A.A. Javadi, and M. Rezania Application of artificial intelligence and data mining techniques in soil modelling J Geomech Eng 1 1 2009 53 74
    • (2009) J Geomech Eng , vol.1 , Issue.1 , pp. 53-74
    • Javadi, A.A.1    Rezania, M.2
  • 15
    • 41649086747 scopus 로고    scopus 로고
    • Development of pipe deterioration models for water distribution systems using EPR
    • 10.2166/hydro.2008.012
    • L. Berardi, Z. Kapelan, O. Giustolisi, and D. Savic Development of pipe deterioration models for water distribution systems using EPR J Hydroinform 10 2 2008 113 126 10.2166/hydro.2008.012
    • (2008) J Hydroinform , vol.10 , Issue.2 , pp. 113-126
    • Berardi, L.1    Kapelan, Z.2    Giustolisi, O.3    Savic, D.4
  • 16
    • 78649740104 scopus 로고    scopus 로고
    • Inferring groundwater system dynamics from hydrological time-series data
    • 10.1080/0262666.1003747556
    • A. Doglioni, D. Mancarella, V. Simeone, and O. Giustolisi Inferring groundwater system dynamics from hydrological time-series data Hydrol Sci J 55 4 2010 593 608 10.1080/0262666.1003747556
    • (2010) Hydrol Sci J , vol.55 , Issue.4 , pp. 593-608
    • Doglioni, A.1    Mancarella, D.2    Simeone, V.3    Giustolisi, O.4
  • 17
    • 78650576147 scopus 로고    scopus 로고
    • Scour depth modelling by a multi-objective evolutionary paradigm
    • 10.1016/j.envsoft.2010.10.013
    • D. Laucelli, and O. Giustolisi Scour depth modelling by a multi-objective evolutionary paradigm Environ Model Softw 26 2011 498 509 10.1016/j.envsoft. 2010.10.013
    • (2011) Environ Model Softw , vol.26 , pp. 498-509
    • Laucelli, D.1    Giustolisi, O.2
  • 18
    • 0029184877 scopus 로고
    • Torsion in reinforced normal and high strength concrete beams. Part-I: An experimental test series
    • L.J. Rasmussen, and G. Baker Torsion in reinforced normal and high strength concrete beams. Part-I: an experimental test series ACI Struct J 92 1 1995 56 62
    • (1995) ACI Struct J , vol.92 , Issue.1 , pp. 56-62
    • Rasmussen, L.J.1    Baker, G.2
  • 19
    • 0035412984 scopus 로고    scopus 로고
    • Torsion of high strength reinforced concrete beams and minimum reinforcement requirement
    • N.E. Koutchoukali, and G. Belarbi Torsion of high strength reinforced concrete beams and minimum reinforcement requirement ACI Struct J 98 4 2001 462 469
    • (2001) ACI Struct J , vol.98 , Issue.4 , pp. 462-469
    • Koutchoukali, N.E.1    Belarbi, G.2
  • 20
    • 2542543487 scopus 로고    scopus 로고
    • Torsional behavior of normal and high strength concrete beams
    • I.K. Fang, and J.K. Shiau Torsional behavior of normal and high strength concrete beams ACI Struct J 101 3 2004 304 313
    • (2004) ACI Struct J , vol.101 , Issue.3 , pp. 304-313
    • Fang, I.K.1    Shiau, J.K.2
  • 21
    • 85116846899 scopus 로고    scopus 로고
    • Torsion of structural concrete - Behavior of reinforced concrete rectangular members
    • ACI, Farmington Hills
    • Hsu TTC. Torsion of structural concrete - behavior of reinforced concrete rectangular members. Torsion of structural concrete SP18-10 1968. ACI, Farmington Hills; p. 261-306.
    • Torsion of Structural Concrete SP18-10 1968 , pp. 261-306
    • Hsu, T.T.C.1
  • 25
    • 0003514257 scopus 로고
    • Canadian standard association CSA Standard, A23-3-94. Rexdale (Ontario): Canadian Standard Association
    • Canadian standard association. Design of concrete structures: structure design. CSA Standard, A23-3-94. Rexdale (Ontario): Canadian Standard Association; 1994.
    • (1994) Design of Concrete Structures: Structure Design
  • 26
    • 0003620590 scopus 로고
    • BS8110 Part 2. British Standards
    • BS8110. Structural use of concrete. Part 2. British Standards; 1985.
    • (1985) Structural Use of Concrete
  • 27
    • 0003758876 scopus 로고    scopus 로고
    • AS3600 Standards Association of Australia
    • AS3600. Concrete structures. Standards Association of Australia; 2001.
    • (2001) Concrete Structures
  • 28
    • 34547526574 scopus 로고
    • Determination of carrying capacity of reinforced concrete elements with rectangular cross - Section subjected to flexure with torsion
    • N.N. Lessig Determination of carrying capacity of reinforced concrete elements with rectangular cross - section subjected to flexure with torsion Institute Betona i Zhelezobetona 5 1959 5 28
    • (1959) Institute Betona i Zhelezobetona , vol.5 , pp. 5-28
    • Lessig, N.N.1
  • 29
    • 3142593738 scopus 로고
    • Reinforced concrete beams subjected to combined torsion and shear
    • University of New South Wales
    • Collins CD, Walsh PF, Archer FE, Hall AS. Reinforced concrete beams subjected to combined torsion and shear. UNICIV Report, No. R-14, University of New South Wales; 1965.
    • (1965) UNICIV Report , Issue.14
    • Collins, C.D.1    Walsh, P.F.2    Archer, F.E.3    Hall, A.S.4
  • 30
    • 3142758585 scopus 로고    scopus 로고
    • Design for torsion and shear in prestressed concrete
    • P. Zia, and T.T.C. Hsu Design for torsion and shear in prestressed concrete PCI J 49 3 2004 34 42
    • (2004) PCI J , vol.49 , Issue.3 , pp. 34-42
    • Zia, P.1    Hsu, T.T.C.2
  • 34
    • 0033232397 scopus 로고    scopus 로고
    • Torsional behavior of reinforced high strength concrete deep beams
    • S.A. Ashour, T.A. Samman, and T.A. Radain Torsional behavior of reinforced high strength concrete deep beams ACI Struct J 96 6 1999 1049 1058
    • (1999) ACI Struct J , vol.96 , Issue.6 , pp. 1049-1058
    • Ashour, S.A.1    Samman, T.A.2    Radain, T.A.3
  • 37
    • 49449089290 scopus 로고    scopus 로고
    • Is my model too complex? Evaluating model formulation using model reduction
    • N.M.J. Crout, D. Tarsitano, and A.T. Wood Is my model too complex? Evaluating model formulation using model reduction Environ Model Softw 24 1 2009 1 7
    • (2009) Environ Model Softw , vol.24 , Issue.1 , pp. 1-7
    • Crout, N.M.J.1    Tarsitano, D.2    Wood, A.T.3
  • 38
    • 68949086436 scopus 로고    scopus 로고
    • Advances in data-driven analyses and modelling using EPR-MOGA
    • 10.2166/hydro.2009.01
    • O. Giustolisi, and D.A. Savic Advances in data-driven analyses and modelling using EPR-MOGA J Hydroinform 11 3 2009 225 236 10.2166/hydro.2009.01
    • (2009) J Hydroinform , vol.11 , Issue.3 , pp. 225-236
    • Giustolisi, O.1    Savic, D.A.2
  • 39
    • 0034201456 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms analyzing the state-of-the-Art
    • D.A. Van Veldhuizen, and G.B. Lamont Multiobjective evolutionary algorithms analyzing the state-of-the-art Evolution Comput 8 2 2000 125 144
    • (2000) Evolution Comput , vol.8 , Issue.2 , pp. 125-144
    • Van Veldhuizen, D.A.1    Lamont, G.B.2
  • 40
    • 0018468345 scopus 로고
    • Comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • M. McKay, W. Conover, and R. Beckman A comparison of three methods for selecting values of input variables in the analysis of output from a computer code Technometrics 211 1979 239 245 (Pubitemid 9452235)
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 239-245
    • McKay, M.D.1    Beckman, R.J.2    Conover, W.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.