-
1
-
-
46249099027
-
-
B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning), 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond (Adaptive Computation and Machine Learning)
-
-
Schölkopf, B.1
Smola, A.J.2
-
2
-
-
77956031473
-
A survey on transfer learning
-
S. J. Pan and Q. Yang, "A Survey on Transfer Learning," IEEE TKDE, vol. 22, pp. 1345-1359, 2010.
-
(2010)
IEEE TKDE
, vol.22
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
3
-
-
85153529394
-
Analysis of representations for domain adaptation
-
S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, "Analysis of representations for domain adaptation," in NIPS, 2006.
-
(2006)
NIPS
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Pereira, F.4
-
4
-
-
85151274557
-
Correcting sample selection bias by unlabeled data
-
J. Huang, A. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf, "Correcting Sample Selection Bias by Unlabeled Data," in NIPS, 2006.
-
(2006)
NIPS
-
-
Huang, J.1
Smola, A.2
Gretton, A.3
Borgwardt, K.M.4
Schölkopf, B.5
-
5
-
-
85161964516
-
Direct importance estimation with model selection and its application to covariate shift adaptation
-
M. Sugiyama, S. Nakajima, H. Kashima, P. von Bunau, and M. Kawanabe, "Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation," in NIPS, 2007.
-
(2007)
NIPS
-
-
Sugiyama, M.1
Nakajima, S.2
Kashima, H.3
Von Bunau, P.4
Kawanabe, M.5
-
6
-
-
79951755128
-
Location and scatter matching for dataset shift in text mining
-
B. Chen, W. Lam, I. W. Tsang, and T.-L. Wong, "Location and Scatter Matching for Dataset Shift in Text Mining," in ICDM, 2010.
-
(2010)
ICDM
-
-
Chen, B.1
Lam, W.2
Tsang, I.W.3
Wong, T.-L.4
-
7
-
-
77949852900
-
Domain adaptation problems: A DASVM classification technique and a circular validation strategy
-
L. Bruzzone and M. Marconcini, "Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy," IEEE Trans. on PAMI, vol. 32, no. 5, pp. 770-787, 2010.
-
(2010)
IEEE Trans. on PAMI
, vol.32
, Issue.5
, pp. 770-787
-
-
Bruzzone, L.1
Marconcini, M.2
-
8
-
-
84857166401
-
Predictive distribution matching SVM for multi-domain learning
-
C.-W. Seah, I. W. Tsang, Y.-S. Ong, and K.-K. Lee, "Predictive Distribution Matching SVM for Multi-domain Learning," in ECML/PKDD, 2010.
-
(2010)
ECML/PKDD
-
-
Seah, C.-W.1
Tsang, I.W.2
Ong, Y.-S.3
Lee, K.-K.4
-
9
-
-
14344263218
-
Learning and evaluating classifiers under sample selection bias
-
B. Z. Zadrozny, "Learning and Evaluating Classifiers under Sample Selection Bias," in ICML, 2004, pp. 903-910.
-
(2004)
ICML
, pp. 903-910
-
-
Zadrozny, B.Z.1
-
10
-
-
1942483137
-
Transductive inference for text classification using support vector machines
-
T. Joachims, "Transductive Inference for Text Classification using Support Vector Machines," in ICML, 1999.
-
(1999)
ICML
-
-
Joachims, T.1
-
11
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples," JMLR, vol. 12, pp. 2399-2434, 2006.
-
(2006)
JMLR
, vol.12
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
13
-
-
84898944155
-
Maximum margin clustering
-
L. Xu, J. Neufeld, B. Larson, and D. Schuurmans, "Maximum margin clustering," in NIPS, 2005, pp. 1537-1544.
-
(2005)
NIPS
, pp. 1537-1544
-
-
Xu, L.1
Neufeld, J.2
Larson, B.3
Schuurmans, D.4
-
14
-
-
34547987546
-
Maximum margin clustering made practical
-
K. Zhang, I. W. Tsang, and J. T. Kwok, "Maximum margin clustering made practical," in ICML, 2007, pp. 1119-1126.
-
(2007)
ICML
, pp. 1119-1126
-
-
Zhang, K.1
Tsang, I.W.2
Kwok, J.T.3
-
15
-
-
77956537253
-
Tighter and convex maximum margin clustering
-
Y.-F. Li, I. W. Tsang, J. T. Kwok, and Z.-H. Zhou, "Tighter and convex maximum margin clustering," in AISTATS, 2009, pp. 328-335.
-
(2009)
AISTATS
, pp. 328-335
-
-
Li, Y.-F.1
Tsang, I.W.2
Kwok, J.T.3
Zhou, Z.-H.4
-
16
-
-
70350645697
-
Transfer learning by distribution matching for targeted advertising
-
S. Bickel, C. Sawade, and T. Scheffer, "Transfer Learning by Distribution Matching for Targeted Advertising," in NIPS, 2008, pp. 145-152.
-
(2008)
NIPS
, pp. 145-152
-
-
Bickel, S.1
Sawade, C.2
Scheffer, T.3
-
17
-
-
70049090801
-
An empirical analysis of domain adaptation algorithm for genomic sequence analysis
-
G. Schweikert, C. Widmer, B. Schölkopf, and G. Rätsch, "An Empirical Analysis of Domain Adaptation Algorithm for Genomic Sequence Analysis," in NIPS, 2009.
-
(2009)
NIPS
-
-
Schweikert, G.1
Widmer, C.2
Schölkopf, B.3
Rätsch, G.4
-
18
-
-
79953064532
-
Domain adaptation from multiple sources via auxiliary classifiers
-
L. Duan, I. W. Tsang, D. Xu, and T. S. Chua, "Domain Adaptation from Multiple Sources via Auxiliary Classifiers," in ICML, 2009.
-
(2009)
ICML
-
-
Duan, L.1
Tsang, I.W.2
Xu, D.3
Chua, T.S.4
-
19
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G. Lanckriet, N. Cristianini, P. Bartlett, and L. E. Ghaoui, "Learning the kernel matrix with semidefinite programming," JMLR, pp. 27-72, 2004.
-
(2004)
JMLR
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
-
20
-
-
80052662849
-
Multi- source domain adaptation and its application to early detection of fatigue
-
R. Chattopadhyay, J. Ye, S. Panchanathan, W. Fan, "Multi- Source Domain Adaptation and Its Application to Early Detection of Fatigue," in KDD, 2011.
-
(2011)
KDD
-
-
Chattopadhyay, R.1
Ye, J.2
Panchanathan, S.3
Fan, W.4
-
21
-
-
14344266561
-
Improving SVM accuracy by training on auxiliary data sources
-
P. Wu and T. G. Dietterich, "Improving SVM Accuracy by Training on Auxiliary Data Sources," in ICML, 2004.
-
(2004)
ICML
-
-
Wu, P.1
Dietterich, T.G.2
-
22
-
-
84871358217
-
Predictive modeling with heterogeneous sources
-
X. Shi, Q. Liu, W. Fan, Q. Yang, and P. S. Yu, "Predictive Modeling with Heterogeneous Sources," in ICDM, 2010, pp. 814-825.
-
(2010)
ICDM
, pp. 814-825
-
-
Shi, X.1
Liu, Q.2
Fan, W.3
Yang, Q.4
Yu, P.S.5
-
23
-
-
80053342456
-
Domain adaptation with structural correspondence learning
-
J. Blitzer, R. McDonald, and F. Pereira, "Domain Adaptation with Structural Correspondence Learning," in EMNLP, 2006.
-
(2006)
EMNLP
-
-
Blitzer, J.1
McDonald, R.2
Pereira, F.3
-
24
-
-
84860524227
-
Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
-
J. Blitzer, M. Dredze, and F. Pereira, "Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification," in ACL, 2007.
-
(2007)
ACL
-
-
Blitzer, J.1
Dredze, M.2
Pereira, F.3
-
25
-
-
79951681949
-
Domain adaptation via transfer component analysis
-
S. J. Pan, I. Tsang, J. Kwok, and Q. Yang, "Domain Adaptation via Transfer Component Analysis," IEEE TNN, vol. 22, pp. 199 - 210, 2011.
-
(2011)
IEEE TNN
, vol.22
, pp. 199-210
-
-
Pan, S.J.1
Tsang, I.2
Kwok, J.3
Yang, Q.4
-
26
-
-
77951767276
-
Bridging domains using world wide knowledge for transfer learning
-
E. W. Xiang, B. Cao, D. H. Hu, and Q. Yang, "Bridging Domains Using World Wide Knowledge for Transfer Learning," IEEE TKDE, pp. 770-783, 2010.
-
(2010)
IEEE TKDE
, pp. 770-783
-
-
Xiang, E.W.1
Cao, B.2
Hu, D.H.3
Yang, Q.4
-
28
-
-
69649090538
-
A minimax theorem with applications to machine learning, signal processing, and finance
-
S.-J. Kim and S. Boyd, "A Minimax Theorem with Applications to Machine Learning, Signal Processing, and Finance," SIAM J. on Optimization, vol. 19, pp. 1344-1367, 2008.
-
(2008)
SIAM J. on Optimization
, vol.19
, pp. 1344-1367
-
-
Kim, S.-J.1
Boyd, S.2
-
29
-
-
0001547779
-
The cutting-plane method for solving convex programs
-
J. Kelley, J. Eu, "The Cutting-Plane Method for Solving Convex Programs," SIAM, vol. 8, pp. 703-712, 1960.
-
(1960)
SIAM
, vol.8
, pp. 703-712
-
-
Kelley, J.1
Eu, J.2
-
30
-
-
77956551904
-
Learning sparse SVM for feature selection on very high dimensional datasets
-
M. Tan, L. Wang, and I. W. Tsang, "Learning Sparse SVM for Feature Selection on Very High Dimensional Datasets," in ICML, 2010, pp. 1047-1054.
-
(2010)
ICML
, pp. 1047-1054
-
-
Tan, M.1
Wang, L.2
Tsang, I.W.3
-
31
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N. V. Chawla, N. Japkowicz, and A. Kotcz, "Editorial: special issue on learning from imbalanced data sets," SIGKDD Explor. Newsl., vol. 6, pp. 1-6, 2004.
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
32
-
-
51849156137
-
Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation
-
M. Sokolova, N. Japkowicz, and S. Szpakowicz, "Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation," AI, pp. 1015-1021, 2006.
-
(2006)
AI
, pp. 1015-1021
-
-
Sokolova, M.1
Japkowicz, N.2
Szpakowicz, S.3
-
33
-
-
33646391662
-
Counting positives accurately despite inaccurate classification
-
G. Forman, "Counting Positives Accurately Despite Inaccurate Classification," in ECML/PKDD, 2005, pp. 564-575.
-
(2005)
ECML/PKDD
, pp. 564-575
-
-
Forman, G.1
|