메뉴 건너뛰기




Volumn , Issue , 2011, Pages 834-843

Understanding propagation error and its effect on collective classification

Author keywords

Collective classification; Probabilistic relational models; Statistical relational learning

Indexed keywords

CLASS LABELS; CLASSIFICATION MODELS; COLLECTIVE INFERENCE; EMPIRICAL EVALUATIONS; ESTIMATION METHODS; FULL SPECTRUM; LOCAL PROPAGATION; LOW-PROPAGATION; MIXTURE MODEL; PROBABILISTIC RELATIONAL MODELS; PROPAGATION ERROR; PSEUDO-LIKELIHOOD; QUANTITATIVE CHARACTERIZATION; REAL WORLD DATA; RELATIONAL LEARNING; RELATIONAL MODEL; RELATIVE PERFORMANCE; STATISTICAL RELATIONAL LEARNING; TEST SETS;

EID: 84857150712     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2011.151     Document Type: Conference Paper
Times cited : (14)

References (22)
  • 2
    • 1942418618 scopus 로고    scopus 로고
    • Discriminative probabilistic models for relational data
    • B. Taskar, P. Abbeel, and D. Koller, "Discriminative probabilistic models for relational data," in UAI, 2002.
    • (2002) UAI
    • Taskar, B.1    Abbeel, P.2    Koller, D.3
  • 3
    • 32044466073 scopus 로고    scopus 로고
    • Markov logic networks
    • M. Richardson and P. Domingos, "Markov logic networks," Mach. Learn., vol. 62, no. 1-2, pp. 107-136, 2006.
    • (2006) Mach. Learn. , vol.62 , Issue.1-2 , pp. 107-136
    • Richardson, M.1    Domingos, P.2
  • 4
    • 33947664999 scopus 로고    scopus 로고
    • Relational dependency networks
    • J. Neville and D. Jensen, "Relational dependency networks," J. Mach. Learn. Res., vol. 8, pp. 653-692, 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 653-692
    • Neville, J.1    Jensen, D.2
  • 5
    • 38049174896 scopus 로고    scopus 로고
    • Efficient weight learning for markov logic networks
    • D. Lowd and P. Domingos, "Efficient weight learning for markov logic networks," in PKDD, 2007, pp. 200-211.
    • (2007) PKDD , pp. 200-211
    • Lowd, D.1    Domingos, P.2
  • 6
    • 84880885580 scopus 로고    scopus 로고
    • Training conditional random fields using virtual evidence boosting
    • L. Liao, T. Choudhury, D. Fox, and H. Kautz, "Training conditional random fields using virtual evidence boosting," in IJCAI, 2007.
    • (2007) IJCAI
    • Liao, L.1    Choudhury, T.2    Fox, D.3    Kautz, H.4
  • 8
    • 34249102504 scopus 로고    scopus 로고
    • Classification in networked data: A toolkit and a univariate case study
    • no. May
    • S. Macskassy and F. Provost, "Classification in networked data: A toolkit and a univariate case study," Journal of Machine Learning Research, vol. 8, no. May, pp. 935-983, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 935-983
    • MacSkassy, S.1    Provost, F.2
  • 10
    • 0001235413 scopus 로고
    • The description of a random field by means of conditional probabilities and conditions of its regularity
    • P. L. Dobrushin, "The description of a random field by means of conditional probabilities and conditions of its regularity," Theory Probab. Appl., vol. 13, pp. 197-224, 1968.
    • (1968) Theory Probab. Appl. , vol.13 , pp. 197-224
    • Dobrushin, P.L.1
  • 12
    • 1942450651 scopus 로고    scopus 로고
    • Linkage and autocorrelation cause feature selection bias in relational learning
    • D. Jensen and J. Neville, "Linkage and autocorrelation cause feature selection bias in relational learning," in ICML, 2002.
    • (2002) ICML
    • Jensen, D.1    Neville, J.2
  • 13
    • 67049098006 scopus 로고    scopus 로고
    • Why stacked models perform effective collective classification
    • A. Fast and D. Jensen, "Why stacked models perform effective collective classification," in ICDM, 2008.
    • (2008) ICDM
    • Fast, A.1    Jensen, D.2
  • 14
    • 34249042076 scopus 로고    scopus 로고
    • Leveraging relational autocorrelation with latent group models
    • J. Neville and D. Jensen, "Leveraging relational autocorrelation with latent group models," in ICDM, 2005.
    • (2005) ICDM
    • Neville, J.1    Jensen, D.2
  • 16
    • 0003161174 scopus 로고
    • Rates of convergence for empirical processes of stationary mixing sequences
    • B. Yu, "Rates of convergence for empirical processes of stationary mixing sequences," Ann. Probab., vol. 22, no. 1, 1994.
    • (1994) Ann. Probab. , vol.22 , Issue.1
    • Yu, B.1
  • 17
    • 84877763981 scopus 로고    scopus 로고
    • Relational learning with one network: An asymptotic analysis
    • R. Xiang and J. Neville, "Relational learning with one network: An asymptotic analysis," in AISTATS, 2011.
    • (2011) AISTATS
    • Xiang, R.1    Neville, J.2
  • 18
    • 50649124443 scopus 로고    scopus 로고
    • A bias/variance decomposition for models using collective inference
    • J. Neville and D. Jensen, "A bias/variance decomposition for models using collective inference," Machine Learning, vol. 73, pp. 87-106, 2008.
    • (2008) Machine Learning , vol.73 , pp. 87-106
    • Neville, J.1    Jensen, D.2
  • 20
    • 65449149851 scopus 로고    scopus 로고
    • Effective label acquisition for collective classification
    • M. Bilgic and L. Getoor, "Effective label acquisition for collective classification," in KDD, 2008.
    • (2008) KDD
    • Bilgic, M.1    Getoor, L.2
  • 22
    • 70350635917 scopus 로고    scopus 로고
    • Using graph-based metrics with empirical risk minimization to speed up active learning on networked data
    • S. A. Macskassy, "Using graph-based metrics with empirical risk minimization to speed up active learning on networked data," in KDD, 2009.
    • (2009) KDD
    • MacSkassy, S.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.