-
1
-
-
33745437485
-
Lower semicontinuous regularization for vector-valued mappings
-
Aït Mansour, M, Metrane, A and Théra, M. 2006. Lower semicontinuous regularization for vector-valued mappings. J. Global Optim., 35: 283-309.
-
(2006)
J. Global Optim.
, vol.35
, pp. 283-309
-
-
Aït Mansour, M.1
Metrane, A.2
Théra, M.3
-
2
-
-
62249126332
-
Duality gap of the conic convex constrained optimization problems in normed spaces
-
Ban, LQ and Song, W. 2009. Duality gap of the conic convex constrained optimization problems in normed spaces. Math. Program., 119: 195-214.
-
(2009)
Math. Program.
, vol.119
, pp. 195-214
-
-
Ban, L.Q.1
Song, W.2
-
3
-
-
54049087423
-
Extended monotropic programming and duality
-
Bertsekas, DP. 2008. Extended monotropic programming and duality. J. Optim. Theor. Appl., 139: 209-225.
-
(2008)
J. Optim. Theor. Appl.
, vol.139
, pp. 209-225
-
-
Bertsekas, D.P.1
-
4
-
-
23744451353
-
Notions of relative interior in Banach spaces
-
Borwein, JM and Goebel, R. 2003. Notions of relative interior in Banach spaces. J. Math. Sciences, 115: 2542-2553.
-
(2003)
J. Math. Sciences
, vol.115
, pp. 2542-2553
-
-
Borwein, J.M.1
Goebel, R.2
-
5
-
-
61349108053
-
-
University of Waterloo Preprint
-
Borwein, JM, Jeyakumar, V, Lewis, AS and Wolkowicz, H. 1988. Constrained approximation via convex programming, University of Waterloo. Preprint
-
(1988)
Constrained approximation via convex programming
-
-
Borwein, J.M.1
Jeyakumar, V.2
Lewis, A.S.3
Wolkowicz, H.4
-
6
-
-
0026867929
-
Partially finite convex programming, part I: Quasi relative interiors and duality theory
-
Borwein, JM and Lewis, AS. 1992. Partially finite convex programming, part I: Quasi relative interiors and duality theory. Math. Program., 57: 15-48.
-
(1992)
Math. Program.
, vol.57
, pp. 15-48
-
-
Borwein, J.M.1
Lewis, A.S.2
-
7
-
-
85037794629
-
Compactly epi-Lipschitzian convex sets and functions in normed spaces
-
Borwein, JM, Lucet, Y and Mordukhovich, B. 2000. Compactly epi-Lipschitzian convex sets and functions in normed spaces. J. Convex Anal., 7: 375-393.
-
(2000)
J. Convex Anal.
, vol.7
, pp. 375-393
-
-
Borwein, J.M.1
Lucet, Y.2
Mordukhovich, B.3
-
8
-
-
77949571044
-
Conjugate Duality in Convex Optimization
-
Berlin, Heidelberg: Springer-Verlag
-
Boţ, RI. 2010. "Conjugate Duality in Convex Optimization". In Lecture Notes in Economics and Mathematical Systems, Vol. 637, Berlin, Heidelberg: Springer-Verlag.
-
(2010)
Lecture Notes in Economics and Mathematical Systems
, vol.637
-
-
Boţ, R.I.1
-
9
-
-
51449103147
-
Revisiting some duality theorems via the quasirelative interior in convex optimization
-
Boţ RI, Csetnek, ER and Moldovan, A. 2008. Revisiting some duality theorems via the quasirelative interior in convex optimization. J. Optim. Theor. Appl., 139: 67-84.
-
(2008)
J. Optim. Theor. Appl.
, vol.139
, pp. 67-84
-
-
Boţ, R.I.1
Csetnek, E.R.2
Moldovan, A.3
-
10
-
-
61349122119
-
Regularity conditions via quasi-relative interior in convex programming
-
Boţ, RI, Csetnek, ER and Wanka, G. 2008. Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim., 19: 217-233.
-
(2008)
SIAM J. Optim.
, vol.19
, pp. 217-233
-
-
Boţ, R.I.1
Csetnek, E.R.2
Wanka, G.3
-
11
-
-
34548654625
-
On strong and total Lagrange duality for convex optimization problems
-
Boţ, RI, Grad, S-M and Wanka, G. 2008. On strong and total Lagrange duality for convex optimization problems. J. Math. Anal. Appl., 337: 1315-1325.
-
(2008)
J. Math. Anal. Appl.
, vol.337
, pp. 1315-1325
-
-
Boţ, R.I.1
Grad, S.-M.2
Wanka, G.3
-
12
-
-
30944465215
-
An alternative formulation for a new closed cone constraint qualification
-
Boţ, RI and Wanka, G. 2006. An alternative formulation for a new closed cone constraint qualification. Nonlinear Anal.: Theor., Meth. Appl., 64: 1367-1381.
-
(2006)
Nonlinear Anal.: Theor., Meth. Appl.
, vol.64
, pp. 1367-1381
-
-
Boţ, R.I.1
Wanka, G.2
-
13
-
-
33645961296
-
A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces
-
Boţ, RI and Wanka, G. 2006. A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Nonlinear Anal.: Theor., Meth. Appl., 64: 2787-2804.
-
(2006)
Nonlinear Anal.: Theor., Meth. Appl.
, vol.64
, pp. 2787-2804
-
-
Boţ, R.I.1
Wanka, G.2
-
14
-
-
27244447811
-
A new geometric condition for Fenchel's duality in infinite dimensional spaces
-
Burachik, RS and Jeyakumar, V. 2005. A new geometric condition for Fenchel's duality in infinite dimensional spaces. Math. Program., 104: 229-233.
-
(2005)
Math. Program.
, vol.104
, pp. 229-233
-
-
Burachik, R.S.1
Jeyakumar, V.2
-
15
-
-
33644528747
-
Necessary and sufficient conditions for stable conjugate duality
-
Burachik, RS, Jeyakumar, V and Wu, Z-Y. 2006. Necessary and sufficient conditions for stable conjugate duality. Nonlinear Anal.: Theor., Meth. Appl., 64: 1998-2006.
-
(2006)
Nonlinear Anal.: Theor., Meth. Appl.
, vol.64
, pp. 1998-2006
-
-
Burachik, R.S.1
Jeyakumar, V.2
Wu, Z.-Y.3
-
16
-
-
17444385638
-
Separation theorem based on the quasirelative interior and application to duality theory
-
Cammaroto, F and Di Bella, B. 2005. Separation theorem based on the quasirelative interior and application to duality theory. J. Optim. Theor. Appl., 125: 223-229.
-
(2005)
J. Optim. Theor. Appl.
, vol.125
, pp. 223-229
-
-
Cammaroto, F.1
Di Bella, B.2
-
17
-
-
38049125699
-
On a separation theorem involving the quasi-relative interior
-
Cammaroto, F and Di Bella, B. 2007. On a separation theorem involving the quasi-relative interior. Proc. Edin. Math. Soc. (2), 50: 605-610.
-
(2007)
Proc. Edin. Math. Soc.
, vol.50
, Issue.2
, pp. 605-610
-
-
Cammaroto, F.1
Di Bella, B.2
-
18
-
-
0000881030
-
Sous-différentiels de fonctions convexes composées
-
Combari, C, Laghdir, M and Thibault, L. 1994. Sous-différentiels de fonctions convexes composées. Annales des Sciences Mathématiques du Québec, 18: 119-148.
-
(1994)
Annales des Sciences Mathématiques du Québec
, vol.18
, pp. 119-148
-
-
Combari, C.1
Laghdir, M.2
Thibault, L.3
-
20
-
-
34249061432
-
General infinite dimensional duality and applications to evolutionary network equilibrium problems
-
Daniele, P and Giuffrè, S. 2007. General infinite dimensional duality and applications to evolutionary network equilibrium problems. Optim. Lett., 1: 227-243.
-
(2007)
Optim. Lett.
, vol.1
, pp. 227-243
-
-
Daniele, P.1
Giuffrè, S.2
-
21
-
-
84872628966
-
Infinite dimensional duality and applications
-
Daniele, P, Giuffrè, S, Idone, G and Maugeri, A. 2007. Infinite dimensional duality and applications. Math. Ann., 339: 221-239.
-
(2007)
Math. Ann.
, vol.339
, pp. 221-239
-
-
Daniele, P.1
Giuffrè, S.2
Idone, G.3
Maugeri, A.4
-
23
-
-
73249145584
-
Constraint qualifications for extended Farkas's lemmas and Lagrangian dualities in convex infinite programming
-
Fang, DH, Li, C and Ng, KF. 2009. Constraint qualifications for extended Farkas's lemmas and Lagrangian dualities in convex infinite programming. SIAM J. Optim., 20: 1311-1332.
-
(2009)
SIAM J. Optim.
, vol.20
, pp. 1311-1332
-
-
Fang, D.H.1
Li, C.2
Ng, K.F.3
-
24
-
-
34848856368
-
Constrained optimization and image space analysis, volume 1: separation of sets and optimality conditions
-
New York: Springer
-
Giannessi, F. 2005. "Constrained optimization and image space analysis, volume 1: separation of sets and optimality conditions". In in Mathematical Concepts and Methods in Science and Engineering, Vol. 49, New York: Springer.
-
(2005)
In Mathematical Concepts and Methods in Science and Engineering
, vol.49
-
-
Giannessi, F.1
-
25
-
-
0025462417
-
A comparison of constraint qualifications in infinite-dimensional convex programming
-
Gowda, MS and Teboulle, M. 1990. A comparison of constraint qualifications in infinite-dimensional convex programming. SIAM J. Cont. Optim., 28: 925-935.
-
(1990)
SIAM J. Cont. Optim.
, vol.28
, pp. 925-935
-
-
Gowda, M.S.1
Teboulle, M.2
-
27
-
-
34648867053
-
A new closed cone constraint qualification for convex optimization
-
Sydney, Australia: University of New South Wales
-
Jeyakumar, V, Dinh, N and Lee, GM. 2004. "A new closed cone constraint qualification for convex optimization". In Appl. Math. Rep. AMR 04/8, Sydney, Australia: University of New South Wales.
-
(2004)
Appl. Math. Rep. AMR 04/8
-
-
Jeyakumar, V.1
Dinh, N.2
Lee, G.M.3
-
28
-
-
70450277572
-
Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization
-
Jeyakumar, V, Huy, NQ and Li, G. 2009. Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization. Optim. Eng., 10: 491-503.
-
(2009)
Optim. Eng.
, vol.10
, pp. 491-503
-
-
Jeyakumar, V.1
Huy, N.Q.2
Li, G.3
-
29
-
-
42149160025
-
Complete characterizations of stable Farkas' lemma and cone-convex programming duality
-
Jeyakumar, V and Lee, GM. 2008. Complete characterizations of stable Farkas' lemma and cone-convex programming duality. Math. Program., 114: 335-347.
-
(2008)
Math. Program.
, vol.114
, pp. 335-347
-
-
Jeyakumar, V.1
Lee, G.M.2
-
30
-
-
72149085465
-
New dual constraint qualifications characterizing zero duality gaps of convex programs and semidefinite programs
-
Jeyakumar, V and Li, G. 2009. New dual constraint qualifications characterizing zero duality gaps of convex programs and semidefinite programs. Nonlinear Anal., 72: e2239-e2249.
-
(2009)
Nonlinear Anal.
, vol.72
-
-
Jeyakumar, V.1
Li, G.2
-
31
-
-
68049121845
-
Stable zero duality gaps in convex programming: Complete dual characterizations with applications to semidefinite programs
-
Jeyakumar, V and Li, G. 2009. Stable zero duality gaps in convex programming: Complete dual characterizations with applications to semidefinite programs. J. Math. Anal. Appl., 360: 156-167.
-
(2009)
J. Math. Anal. Appl.
, vol.360
, pp. 156-167
-
-
Jeyakumar, V.1
Li, G.2
-
32
-
-
0026867587
-
Generalizations of Slater's constraint qualification for infinite convex programs
-
Jeyakumar, V and Wolkowicz, H. 1992. Generalizations of Slater's constraint qualification for infinite convex programs. Math. Program. Series B, 57: 85-101.
-
(1992)
Math. Program. Series B
, vol.57
, pp. 85-101
-
-
Jeyakumar, V.1
Wolkowicz, H.2
-
33
-
-
70450199401
-
Stable and total Fenchel duality for convex optimization problems in locally convex spaces
-
Li, C, Fang, D, López, G and López, MA. 2009. Stable and total Fenchel duality for convex optimization problems in locally convex spaces. SIAM J. Optim., 20: 1032-1051.
-
(2009)
SIAM J. Optim.
, vol.20
, pp. 1032-1051
-
-
Li, C.1
Fang, D.2
López, G.3
López, M.A.4
-
34
-
-
70350074661
-
Qualification-free optimality conditions for convex programs with separable inequality constraints
-
Li, G and Jeyakumar, V. 2009. Qualification-free optimality conditions for convex programs with separable inequality constraints. J. Convex Anal., 16: 845-856.
-
(2009)
J. Convex Anal.
, vol.16
, pp. 845-856
-
-
Li, G.1
Jeyakumar, V.2
-
35
-
-
69649083493
-
On extension of Fenchel duality and its application
-
Li, G and Ng, KF. 2008. On extension of Fenchel duality and its application. SIAM J. Optim., 19: 1489-1509.
-
(2008)
SIAM J. Optim.
, vol.19
, pp. 1489-1509
-
-
Li, G.1
Ng, K.F.2
-
38
-
-
0039088691
-
Fenchel and Lagrange duality are equivalent
-
Magnanti, TL. 1974. Fenchel and Lagrange duality are equivalent. Math. Program., 7: 253-258.
-
(1974)
Math. Program.
, vol.7
, pp. 253-258
-
-
Magnanti, T.L.1
-
39
-
-
0009119348
-
Semi-continuous mappings in general topology
-
Penot, J-P and Théra, M. 1982. Semi-continuous mappings in general topology. Archiv der Mathematik, 38: 158-166.
-
(1982)
Archiv der Mathematik
, vol.38
, pp. 158-166
-
-
Penot, J.-P.1
Théra, M.2
-
40
-
-
84856839617
-
-
Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics 16, Society for Industrial and Applied Mathematics, Philadelphia
-
R.T. Rockafellar, Conjugate Duality and Optimization, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics 16, Society for Industrial and Applied Mathematics, Philadelphia, 1974.
-
(1974)
Conjugate Duality and Optimization
-
-
Rockafellar, R.T.1
-
41
-
-
27244448908
-
The Fenchel duality theorem in Fréchet spaces
-
Rodrigues, B. 1990. The Fenchel duality theorem in Fréchet spaces. Optimization, 21: 13-22.
-
(1990)
Optimization
, vol.21
, pp. 13-22
-
-
Rodrigues, B.1
-
43
-
-
0031281277
-
Generalized semicontinuity and existence theorems for cone saddle points
-
Tanaka, T. 1997. Generalized semicontinuity and existence theorems for cone saddle points. Appl. Math. Optimmization, 36: 313-322.
-
(1997)
Appl. Math. Optimmization
, vol.36
, pp. 313-322
-
-
Tanaka, T.1
-
44
-
-
38249007206
-
The convexity of A and B assures intA + B = int(A + B)
-
Tanaka, T and Kuroiwa, D. 1993. The convexity of A and B assures intA + B = int(A + B). Appl. Math. Lett., 6: 83-86.
-
(1993)
Appl. Math. Lett.
, vol.6
, pp. 83-86
-
-
Tanaka, T.1
Kuroiwa, D.2
-
45
-
-
45749111441
-
Some convex programs without a duality gap
-
Tseng, P. 2009. Some convex programs without a duality gap. Math. Program., 116: 553-578.
-
(2009)
Math. Program.
, vol.116
, pp. 553-578
-
-
Tseng, P.1
-
46
-
-
4243384962
-
A comparison of constraint qualifications in infinite-dimensional convex programming revisited
-
Zǎlinescu, C. 1999. A comparison of constraint qualifications in infinite-dimensional convex programming revisited. J. Australian Math. Soc. Series B, 40: 353-378.
-
(1999)
J. Australian Math. Soc. Series B
, vol.40
, pp. 353-378
-
-
Zǎlinescu, C.1
|