메뉴 건너뛰기




Volumn 139, Issue 1, 2008, Pages 67-84

Revisiting some duality theorems via the quasirelative interior in convex optimization

Author keywords

Lagrange duality; Quasi interior; Quasirelative interior; Regularity conditions; Separation theorems

Indexed keywords

LAGRANGE MULTIPLIERS;

EID: 51449103147     PISSN: 00223239     EISSN: 15732878     Source Type: Journal    
DOI: 10.1007/s10957-008-9412-4     Document Type: Article
Times cited : (60)

References (13)
  • 1
    • 0025462417 scopus 로고
    • A comparison of constraint qualifications in infinite-dimensional convex programming
    • Gowda, M.S., Teboulle, M.: A comparison of constraint qualifications in infinite-dimensional convex programming. SIAM J. Control Optim. 28, 925-935 (1990)
    • (1990) SIAM J. Control Optim. , vol.28 , pp. 925-935
    • Gowda, M.S.1    Teboulle, M.2
  • 3
    • 30944465215 scopus 로고    scopus 로고
    • An alternative formulation for a new closed cone constraint qualification
    • 6
    • Boţ, R.I., Wanka, G.: An alternative formulation for a new closed cone constraint qualification. Nonlinear Anal. 64(6), 1367-1381 (2006)
    • (2006) Nonlinear Anal. , vol.64 , pp. 1367-1381
    • Boţ, R.I.1    Wanka, G.2
  • 4
    • 0026867929 scopus 로고
    • Partially finite convex programming, part I: Quasi relative interiors and duality theory
    • Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part I: Quasi relative interiors and duality theory. Math. Program. 57, 15-48 (1992)
    • (1992) Math. Program. , vol.57 , pp. 15-48
    • Borwein, J.M.1    Lewis, A.S.2
  • 5
    • 0026867587 scopus 로고
    • Generalizations of Slater's constraint qualification for infinite convex programs
    • Jeyakumar, V., Wolkowicz, H.: Generalizations of Slater's constraint qualification for infinite convex programs. Math. Program. 57, 85-101 (1992)
    • (1992) Math. Program. , vol.57 , pp. 85-101
    • Jeyakumar, V.1    Wolkowicz, H.2
  • 6
    • 17444385638 scopus 로고    scopus 로고
    • Separation theorem based on the quasirelative interior and application to duality theory
    • 1
    • Cammaroto, F., Di Bella, B.: Separation theorem based on the quasirelative interior and application to duality theory. J. Optim. Theory Appl. 125(1), 223-229 (2005)
    • (2005) J. Optim. Theory Appl. , vol.125 , pp. 223-229
    • Cammaroto, F.1    Di Bella, B.2
  • 7
    • 34249061432 scopus 로고    scopus 로고
    • General infinite dimensional duality theory and applications to evolutionary network equilibrium problems
    • 3
    • Daniele, P., Giuffrè, S.: General infinite dimensional duality theory and applications to evolutionary network equilibrium problems. Optim. Lett. 1(3), 227-243 (2007)
    • (2007) Optim. Lett. , vol.1 , pp. 227-243
    • Daniele, P.1    Giuffrè, S.2
  • 8
    • 84872628966 scopus 로고    scopus 로고
    • Infinite dimensional duality and applications
    • 1
    • Daniele, P., Giuffrè, S., Idone, G., Maugeri, A.: Infinite dimensional duality and applications. Math. Ann. 339(1), 221-239 (2007)
    • (2007) Math. Ann. , vol.339 , pp. 221-239
    • Daniele, P.1    Giuffrè, S.2    Idone, G.3    Maugeri, A.4
  • 11
    • 23744451353 scopus 로고    scopus 로고
    • Notions of relative interior in Banach spaces
    • 4
    • Borwein, J.M., Goebel, R.: Notions of relative interior in Banach spaces. J. Math. Sci. 115(4), 2542-2553 (2003)
    • (2003) J. Math. Sci. , vol.115 , pp. 2542-2553
    • Borwein, J.M.1    Goebel, R.2
  • 12
    • 36849080804 scopus 로고    scopus 로고
    • Constrained optimization and image space analysis
    • Mathematical Concepts and Methods in Science and Engineering, Springer New York
    • Giannessi, F.: Constrained Optimization and Image Space Analysis, vol. 1. Separation of Sets and Optimality Conditions. Mathematical Concepts and Methods in Science and Engineering, vol. 49. Springer, New York (2005)
    • (2005) Separation of Sets and Optimality Conditions , vol.1-49
    • Giannessi, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.