메뉴 건너뛰기




Volumn 81, Issue , 2012, Pages 33-40

Cluster-based adaptive metric classification

Author keywords

Adaptive metric; Bayes' rule; Cluster estimation; Gap statistic; Principal component analysis; Prototype based classification

Indexed keywords

ADAPTIVE METRIC; BAYES' RULE; CLASSIFICATION ALGORITHM; CLUSTER-BASED; DATA SETS; DISTANCE-BASED CLASSIFICATION; GAP STATISTIC; MAHALANOBIS DISTANCES; NOVEL ALGORITHM; NUMBER OF CLUSTERS; PRINCIPAL COMPONENTS; TRAINING SETS;

EID: 84856328036     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.10.018     Document Type: Article
Times cited : (8)

References (33)
  • 2
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T., Hart P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13(1):21-27.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 6
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger K., Saul L. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009, 10:207-244.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 207-244
    • Weinberger, K.1    Saul, L.2
  • 12
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7:179-188.
    • (1936) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 15
    • 0042024924 scopus 로고    scopus 로고
    • LDA/SVM driven nearest neighbor classification
    • Peng J., Heisterkamp D., Dai H. LDA/SVM driven nearest neighbor classification. IEEE Trans. Neural Networks 2003, 14(4):940-942. 10.1109/TNN.2003.813835.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.4 , pp. 940-942
    • Peng, J.1    Heisterkamp, D.2    Dai, H.3
  • 18
    • 0003410791 scopus 로고    scopus 로고
    • Springer-Verlag New York, Inc., Secaucus, NJ, USA
    • Kohonen T. Self-Organizing Maps 2001, Springer-Verlag New York, Inc., Secaucus, NJ, USA.
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 19
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer B., Villmann T. Generalized relevance learning vector quantization. Neural Networks 2002, 15:1059-1068.
    • (2002) Neural Networks , vol.15 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 20
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • Schneider P., Biehl M., Hammer B. Adaptive relevance matrices in learning vector quantization. Neural Comput. 2009, 21:3532-3561.
    • (2009) Neural Comput. , vol.21 , pp. 3532-3561
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 21
    • 34547996209 scopus 로고    scopus 로고
    • Information-theoretic metric learning, in: ICML, Corvalis, Oregon, USA
    • J.V. Davis, B. Kulis, P. Jain, S. Sra, I.S. Dhillon, Information-theoretic metric learning, in: ICML, Corvalis, Oregon, USA, 2007, pp. 209-216.
    • (2007) , pp. 209-216
    • Davis, J.V.1    Kulis, B.2    Jain, P.3    Sra, S.4    Dhillon, I.S.5
  • 22
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the gap statistic
    • Tibshirani R., Walther G., Hastie T. Estimating the number of clusters in a dataset via the gap statistic. J. R. Stat. Soc. Ser. B 2000, 63:411-423.
    • (2000) J. R. Stat. Soc. Ser. B , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 23
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 1977, 39(1):1-38.
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 25
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • Dudoit S., Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 2002, 3(7):1-21.
    • (2002) Genome Biol. , vol.3 , Issue.7 , pp. 1-21
    • Dudoit, S.1    Fridlyand, J.2
  • 27
    • 0001768361 scopus 로고
    • Maximum likelihood and decision theory
    • Efron B. Maximum likelihood and decision theory. Ann. Stat. 1982, 10(2):340-356.
    • (1982) Ann. Stat. , vol.10 , Issue.2 , pp. 340-356
    • Efron, B.1
  • 28
    • 84856364370 scopus 로고    scopus 로고
    • UCI Machine Learning Repository URL
    • A. Asuncion, D. Newman, UCI Machine Learning Repository URL, 2007. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 29
    • 34447507896 scopus 로고    scopus 로고
    • Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection
    • Little M., McSharry P., Roberts S., Costello D., Moroz I. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. Biomed. Eng. Online 2007, 6(1):23.
    • (2007) Biomed. Eng. Online , vol.6 , Issue.1 , pp. 23
    • Little, M.1    McSharry, P.2    Roberts, S.3    Costello, D.4    Moroz, I.5
  • 30
    • 33646093001 scopus 로고    scopus 로고
    • Feature representation and discrimination based on Gaussian mixture model probability densities-practices and algorithms
    • Paalanen P., Kamarainen J.-K., Ilonen J., Kälviäinen H. Feature representation and discrimination based on Gaussian mixture model probability densities-practices and algorithms. Pattern Recognition 2006, 39:1346-1358.
    • (2006) Pattern Recognition , vol.39 , pp. 1346-1358
    • Paalanen, P.1    Kamarainen, J.-K.2    Ilonen, J.3    Kälviäinen, H.4
  • 31
    • 84856315898 scopus 로고    scopus 로고
    • Information Theoretic Metric Learning, UT, Austin, .
    • J.V. Davis, B. Kulis, P. Jain, S. Sra, I.S. Dhillon, Information Theoretic Metric Learning, UT, Austin, http://www.cs.utexas.edu/users/pjain/itml/.
    • Davis, J.V.1    Kulis, B.2    Jain, P.3    Sra, S.4    Dhillon, I.S.5
  • 32
    • 84856315897 scopus 로고    scopus 로고
    • SVM and Kernel Methods Matlab Toolbox, Perception Systèmes et Information, INSA de Rouen, Rouen, France
    • S. Canu, Y. Grandvalet, V. Guigue, A. Rakotomamonjy, SVM and Kernel Methods Matlab Toolbox, Perception Systèmes et Information, INSA de Rouen, Rouen, France, 2005.
    • (2005)
    • Canu, S.1    Grandvalet, Y.2    Guigue, V.3    Rakotomamonjy, A.4
  • 33
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu C.-W., Lin C.-J. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks 2002, 13:415-425.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.