메뉴 건너뛰기




Volumn 28, Issue 2, 2012, Pages 222-228

Modelling time course gene expression data with finite mixtures of linear additive models

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; BIOLOGICAL MODEL; CELL CYCLE; CYTOLOGY; GENE EXPRESSION PROFILING; GENETICS; HUMAN; REGRESSION ANALYSIS; SACCHAROMYCES CEREVISIAE; STATISTICAL MODEL; TIME;

EID: 84856113478     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btr653     Document Type: Article
Times cited : (9)

References (19)
  • 1
    • 35348872479 scopus 로고    scopus 로고
    • Analysis of time-series gene expression data: Methods, challenges, and opportunities
    • Androulakis,I. et al. (2007) Analysis of time-series gene expression data: Methods, challenges, and opportunities. Ann. Rev. Biomed. Eng., 9, 205-228.
    • (2007) Ann. Rev. Biomed. Eng. , vol.9 , pp. 205-228
    • Androulakis, I.1
  • 2
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
    • Biernacki,C. et al. (2003) Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Stat. Data Anal., 41, 561-575.
    • (2003) Comput. Stat. Data Anal. , vol.41 , pp. 561-575
    • Biernacki, C.1
  • 3
    • 26844458204 scopus 로고    scopus 로고
    • Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments
    • Celeux,G. et al. (2005) Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments. Stat. Model., 5, 243-267.
    • (2005) Stat. Model. , vol.5 , pp. 243-267
    • Celeux, G.1
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EMalgorithm
    • Dempster,A.P. et al. (1977) Maximum likelihood from incomplete data via the EMalgorithm. J. R. Stat. Soc. B, 39, 1-38.
    • (1977) J. R. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1
  • 5
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis and density estimation
    • Fraley,C. and Raftery,A.E. (2002) Model-based clustering, discriminant analysis and density estimation. J. Am. Stat. Assoc., 97, 611-631.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 6
    • 54949126376 scopus 로고    scopus 로고
    • FlexMix version 2 finite mixtures with concomitant variables and varying and constant parameters
    • Grün,B. and Leisch,F. (2008) FlexMix version 2: finite mixtures with concomitant variables and varying and constant parameters. J. Stat. Softwr., 28, 1-35.
    • (2008) J. Stat. Softwr. , vol.28 , pp. 1-35
    • Grün, B.1    Leisch, F.2
  • 8
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert,L. and Arabie,P. (1985) Comparing partitions. J. Classif., 2, 193-218.
    • (1985) J. Classif. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 10
    • 11244333649 scopus 로고    scopus 로고
    • FlexMix: a general framework for finite mixture models and latent class regression in R
    • Leisch,F. (2004) FlexMix: a general framework for finite mixture models and latent class regression in R. J. Stat. Softwr., 11, 1-18.
    • (2004) J. Stat. Softwr. , vol.11 , pp. 1-18
    • Leisch, F.1
  • 11
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with B-splines
    • Luan,Y. and Li,H. (2003) Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics, 19, 474-482.
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 12
    • 65749115769 scopus 로고    scopus 로고
    • Variable selection for clustering with Gaussian mixture models
    • Maugis,C. et al. (2009) Variable selection for clustering with Gaussian mixture models. Biometrics, 65, 701-709.
    • (2009) Biometrics , vol.65 , pp. 701-709
    • Maugis, C.1
  • 13
    • 33747890494 scopus 로고    scopus 로고
    • A mixture model with random-effects components for clustering correlated gene-expression profiles
    • Ng,S.K. et al. (2006) A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics, 22, 1745-1752.
    • (2006) Bioinformatics , vol.22 , pp. 1745-1752
    • Ng, S.K.1
  • 14
    • 79961135005 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
    • (2011) R: A Language and Environment for Statistical Computing
  • 15
    • 64549114102 scopus 로고    scopus 로고
    • gcExplorer: interactive exploration of gene clusters
    • Scharl,T. and Leisch,F. (2009) gcExplorer: interactive exploration of gene clusters. Bioinformatics, 25, 1089-1090.
    • (2009) Bioinformatics , vol.25 , pp. 1089-1090
    • Scharl, T.1    Leisch, F.2
  • 16
    • 77949514786 scopus 로고    scopus 로고
    • Mixtures of regression models for time-course gene expression data: Evaluation of initialization and random effects
    • Scharl,T. et al. (2010) Mixtures of regression models for time-course gene expression data: Evaluation of initialization and random effects. Bioinformatics, 26, 370-377.
    • (2010) Bioinformatics , vol.26 , pp. 370-377
    • Scharl, T.1
  • 17
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman,P.T. et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell, 9, 3273-3297.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 19
    • 78650862532 scopus 로고    scopus 로고
    • Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
    • Wood,S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B, 73, 3-36.
    • (2011) J. R. Stat. Soc. B , vol.73 , pp. 3-36
    • Wood, S.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.