메뉴 건너뛰기




Volumn , Issue , 2011, Pages 290-293

Systems approach to identifying relevant pathways from phenotype information in dose-dependent time series microarray data

Author keywords

dose dependent time series microarray data; nanoparticles; pathways; toxicogenomics

Indexed keywords

COMPREHENSIVE EVALUATION; COMPUTATIONAL APPROACH; DOSE-DEPENDENT; DOSE-DEPENDENT TIME SERIES MICROARRAY DATA; EXPRESSION PROFILE; LUNG INFLAMMATION; MICROARRAY DATA; MOUSE LUNG; PATHWAYS; SYSTEM USE; SYSTEMS APPROACH; TIME-SERIES GENE EXPRESSION DATA; TOXICOGENOMICS; WELL-DISPERSED;

EID: 84856026968     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBM.2011.76     Document Type: Conference Paper
Times cited : (7)

References (20)
  • 3
    • 77956537377 scopus 로고    scopus 로고
    • On reverse engineering of gene interaction networks using time course data with repeated measurements
    • July
    • E. R. Morrissey, M. A. Juarez, K. J. Denby, and N. J. Burroughs, "On reverse engineering of gene interaction networks using time course data with repeated measurements," Bioinformatics, vol. 26, no. 18, pp. 2305-2312, July2010.
    • (2010) Bioinformatics , vol.26 , Issue.18 , pp. 2305-2312
    • Morrissey, E.R.1    Juarez, M.A.2    Denby, K.J.3    Burroughs, N.J.4
  • 4
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • S. Y. Kim, S. Imoto, and S. Miyano, "Inferring gene networks from time series microarray data using dynamic Bayesian networks," Briefings in Bioinformatics, vol. 4, no. 3, pp. 228-235, 2003.
    • (2003) Briefings in Bioinformatics , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 5
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Aug.
    • M. Zou and S. D. Conzen, "A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data," Bioinformatics, vol. 21, no. 1, pp. 71-79, Aug.2004.
    • (2004) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 6
    • 38149114028 scopus 로고    scopus 로고
    • Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes
    • Feb.
    • P. R. Bushel, R. D. Wolfinger, and G. Gibson, "Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes," BMC Systems Biology, vol. 1, no. 15 Feb.2007.
    • (2007) BMC Systems Biology , vol.1 , Issue.15
    • Bushel, P.R.1    Wolfinger, R.D.2    Gibson, G.3
  • 7
    • 79952096381 scopus 로고    scopus 로고
    • The evolution of bioinformatics in toxicology: Advancing toxicogenomics
    • Dec.
    • C. A. Afshari, H. K. Hamadeh, and P. R. Bushel, "The evolution of bioinformatics in toxicology: advancing toxicogenomics,"Toxicological Sciences, vol. 120, no. S1, p. S225-S237, Dec.2010.
    • (2010) Toxicological Sciences , vol.120 , Issue.S1
    • Afshari, C.A.1    Hamadeh, H.K.2    Bushel, P.R.3
  • 8
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct.
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, no. 6755, pp. 759-760, Oct.1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 759-760
    • Lee, D.D.1    Seung, H.S.2
  • 10
    • 48249151183 scopus 로고    scopus 로고
    • Non-negative matrix factorization: An analytical and interpretive tool in computaional biology
    • July
    • K. Devarajan, "Non-negative matrix factorization: an analytical and interpretive tool in computaional biology," PLoS Computational Biology, vol. 4, no. 7, p. e1000029, July2008.
    • (2008) PLoS Computational Biology , vol.4 , Issue.7
    • Devarajan, K.1
  • 11
    • 71549152223 scopus 로고    scopus 로고
    • Matrix Factorization for Recovery of Biological Processes from Microarray Data
    • A. Kossenkov, V and M. F. Ochs, "Matrix Factorization for Recovery of Biological Processes from Microarray Data,"Methods in Enzymology, vol. 467, pp. 59-77, 2009.
    • (2009) Methods in Enzymology , vol.467 , pp. 59-77
    • Kossenkov, A.V.1    Ochs, M.F.2
  • 12
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Aug.
    • O. Alter, P. O. Brown, and D. Botstein, "Singular value decomposition for genome-wide expression data processing and modeling," Proceedings of the National Academy of Sciences of the USA, vol. 97, no. 18, pp. 10101-10106, Aug.2000.
    • (2000) Proceedings of the National Academy of Sciences of the USA , vol.97 , Issue.18 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 13
    • 0035999975 scopus 로고    scopus 로고
    • Application of Bayesian decomposition for analyzing microarray data
    • T. D. Moloshok, R. R. Klevecz, J. D. Grand, F. J. Manion, and M. F. Ochs, "Application of Bayesian decomposition for analyzing microarray data," Bioinformatics, no. 18, pp. 566-575, 2002.
    • (2002) Bioinformatics , Issue.18 , pp. 566-575
    • Moloshok, T.D.1    Klevecz, R.R.2    Grand, J.D.3    Manion, F.J.4    Ochs, M.F.5
  • 14
    • 71549130141 scopus 로고    scopus 로고
    • Detection of treatment-induced changes in signalling pathways in gastrointestinal stromal tumors using transcriptomic data
    • Dec.
    • M. F. Ochs, L. Rink, C. Tarn, S. Mbruru, T. Taguchi, B. Eisenberg, and A. K. Godwin, "Detection of treatment-induced changes in signalling pathways in gastrointestinal stromal tumors using transcriptomic data," Cancer Research, vol. 69, no. 23, pp. 9125-9132, Dec.2009.
    • (2009) Cancer Research , vol.69 , Issue.23 , pp. 9125-9132
    • Ochs, M.F.1    Rink, L.2    Tarn, C.3    Mbruru, S.4    Taguchi, T.5    Eisenberg, B.6    Godwin, A.K.7
  • 19


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.