-
1
-
-
77949570744
-
Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes
-
Andric P, Meyer AS, Jensen PA, Dam-Johansen K. 2010. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 28(3):308-324.
-
(2010)
Biotechnol Adv
, vol.28
, Issue.3
, pp. 308-324
-
-
Andric, P.1
Meyer, A.S.2
Jensen, P.A.3
Dam-Johansen, K.4
-
2
-
-
70349991285
-
Modeling cellulase kinetics on lignocellulosic substrates
-
Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS. 2009. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27(6):833-848.
-
(2009)
Biotechnol Adv
, vol.27
, Issue.6
, pp. 833-848
-
-
Bansal, P.1
Hall, M.2
Realff, M.J.3
Lee, J.H.4
Bommarius, A.S.5
-
3
-
-
79953781576
-
Molecular-level origins of biomass recalcitrance
-
Beckham G, Matthews J, Peters B, Bomble Y, Himmel ME, Crowley M. 2011. Molecular-level origins of biomass recalcitrance. J Phys Chem B 115(14):4118-4127.
-
(2011)
J Phys Chem B
, vol.115
, Issue.14
, pp. 4118-4127
-
-
Beckham, G.1
Matthews, J.2
Peters, B.3
Bomble, Y.4
Himmel, M.E.5
Crowley, M.6
-
4
-
-
3042698636
-
Discrimination among eight modified Michaelis-Menten kinetic models of cellulose hydrolysis with a large range of substrate/enzyme ratios
-
Bezerra R, Dias A. 2004. Discrimination among eight modified Michaelis-Menten kinetic models of cellulose hydrolysis with a large range of substrate/enzyme ratios. Appl Biochem Biotechnol 112:173-184.
-
(2004)
Appl Biochem Biotechnol
, vol.112
, pp. 173-184
-
-
Bezerra, R.1
Dias, A.2
-
5
-
-
57049171897
-
Cellulase kinetics as a function of cellulose pretreatment
-
Bommarius AS, Katona A, Cheben SE, Patel AS, Ragauskas AJ, Knudson K, Pu Y. 2008. Cellulase kinetics as a function of cellulose pretreatment. Metab Eng 10(6):370-381.
-
(2008)
Metab Eng
, vol.10
, Issue.6
, pp. 370-381
-
-
Bommarius, A.S.1
Katona, A.2
Cheben, S.E.3
Patel, A.S.4
Ragauskas, A.J.5
Knudson, K.6
Pu, Y.7
-
6
-
-
68149159674
-
A national laboratory market and technology assessment of the 30x30 scenario
-
NREL/TP-510-40942, National Renewable Energy Laboratory (NREL), Idaho National Laboratory (INL), Oak Ridge National Laboratory (ORNL), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL).
-
Foust T, Wooley R, Sheehan J, Wallace R, Ibsen K, Dayton D, Himmel M, Ashworth J, McCormick R, Melendez M, Hess J, Kenney K, Wright C, Radtke C, Perlack R, Mielenz J, Wang M, Synder S, Werpy T. 2007. A national laboratory market and technology assessment of the 30x30 scenario. Tech Rep NREL/TP-510-40942, National Renewable Energy Laboratory (NREL), Idaho National Laboratory (INL), Oak Ridge National Laboratory (ORNL), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL).
-
(2007)
Tech Rep
-
-
Foust, T.1
Wooley, R.2
Sheehan, J.3
Wallace, R.4
Ibsen, K.5
Dayton, D.6
Himmel, M.7
Ashworth, J.8
McCormick, R.9
Melendez, M.10
Hess, J.11
Kenney, K.12
Wright, C.13
Radtke, C.14
Perlack, R.15
Mielenz, J.16
Wang, M.17
Synder, S.18
Werpy, T.19
-
7
-
-
84855937177
-
A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: Depolymerization by EGI and CBHI
-
DOI: 10.1002/bit.23355.
-
Griggs AJ, Stickel JJ, Lischeske JJ. 2011. A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: Depolymerization by EGI and CBHI. Biotechnol Bioeng DOI: 10.1002/bit.23355.
-
(2011)
Biotechnol Bioeng
-
-
Griggs, A.J.1
Stickel, J.J.2
Lischeske, J.J.3
-
8
-
-
77749315426
-
Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate
-
Hall M, Bansal P, Lee J, Realff M, Bommarius A. 2010. Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571-1582.
-
(2010)
FEBS J
, vol.277
, pp. 1571-1582
-
-
Hall, M.1
Bansal, P.2
Lee, J.3
Realff, M.4
Bommarius, A.5
-
9
-
-
73649106924
-
High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose
-
Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M. 2009. High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186-36190.
-
(2009)
J Biol Chem
, vol.284
, Issue.52
, pp. 36186-36190
-
-
Igarashi, K.1
Koivula, A.2
Wada, M.3
Kimura, S.4
Penttila, M.5
Samejima, M.6
-
10
-
-
77955691535
-
Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis
-
Jalak J, Valjamae P. 2010. Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng 106(6):871-883.
-
(2010)
Biotechnol Bioeng
, vol.106
, Issue.6
, pp. 871-883
-
-
Jalak, J.1
Valjamae, P.2
-
11
-
-
34548213824
-
Cellulase digestibility of pretreated biomass is limited by cellulose accessibility
-
Jeoh T, Ishizawa C, Davis M, Himmel M, Adney W, Johnson D. 2007. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98(1):112-122.
-
(2007)
Biotechnol Bioeng
, vol.98
, Issue.1
, pp. 112-122
-
-
Jeoh, T.1
Ishizawa, C.2
Davis, M.3
Himmel, M.4
Adney, W.5
Johnson, D.6
-
12
-
-
0029743877
-
The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size
-
Kleman-Leyer KM, SiikaAho M, Teeri TT, Kirk TK. 1996. The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Appl Environ Microbiol 62(8):2883-2887.
-
(1996)
Appl Environ Microbiol
, vol.62
, Issue.8
, pp. 2883-2887
-
-
Kleman-Leyer, K.M.1
SiikaAho, M.2
Teeri, T.T.3
Kirk, T.K.4
-
13
-
-
77956242317
-
A mechanistic model of the enzymatic hydrolysis of cellulose
-
Levine SE, Fox JM, Blanch HW, Clark DS. 2010. A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 107(1):37-51.
-
(2010)
Biotechnol Bioeng
, vol.107
, Issue.1
, pp. 37-51
-
-
Levine, S.E.1
Fox, J.M.2
Blanch, H.W.3
Clark, D.S.4
-
14
-
-
0029861144
-
The cellulose-binding domain of major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose
-
Linder M, Teeri T. 1996. The cellulose-binding domain of major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proc Natl Acad Sci USA 93:12251-12255.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 12251-12255
-
-
Linder, M.1
Teeri, T.2
-
15
-
-
0343247806
-
The roles and function of cellulose-binding domains
-
Linder M, Teeri T. 1997. The roles and function of cellulose-binding domains. J Biotechnol 57:15-28.
-
(1997)
J Biotechnol
, vol.57
, pp. 15-28
-
-
Linder, M.1
Teeri, T.2
-
16
-
-
0032487130
-
Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: Adsorption, sugar production pattern, and synergism of the enzymes
-
Medve J, Karlsson J, Lee D, Tjerneld F. 1998. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: Adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59(5):621-634.
-
(1998)
Biotechnol Bioeng
, vol.59
, Issue.5
, pp. 621-634
-
-
Medve, J.1
Karlsson, J.2
Lee, D.3
Tjerneld, F.4
-
17
-
-
33846798323
-
Enzymatic depolymerisation of cellulose
-
Pala H, Mota M, Gama F. 2007. Enzymatic depolymerisation of cellulose. Carbohydr Polym 68:101-108.
-
(2007)
Carbohydr Polym
, vol.68
, pp. 101-108
-
-
Pala, H.1
Mota, M.2
Gama, F.3
-
18
-
-
79953056034
-
Race to the pump
-
14-17.
-
Ritter SK. 2011. Race to the pump. Chem Eng News 89(7):11-12 14-17.
-
(2011)
Chem Eng News
, vol.89
, Issue.7
, pp. 11-12
-
-
Ritter, S.K.1
-
19
-
-
70649107855
-
Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings
-
Roche CM, Dibble CJ, Stickel JJ. 2009. Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotechnol Biofuels 2:28.
-
(2009)
Biotechnol Biofuels
, vol.2
, pp. 28
-
-
Roche, C.M.1
Dibble, C.J.2
Stickel, J.J.3
-
20
-
-
0032005113
-
Modes of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei
-
Srisodsuk M, Kleman-Leyer K, Keranen S, Kirk TK, Teeri TT. 1998. Modes of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei. Eur J Biochem 251(3):885-892.
-
(1998)
Eur J Biochem
, vol.251
, Issue.3
, pp. 885-892
-
-
Srisodsuk, M.1
Kleman-Leyer, K.2
Keranen, S.3
Kirk, T.K.4
Teeri, T.T.5
-
21
-
-
34247226135
-
Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates
-
Tu MB, Chandra RP, Saddler JN. 2007. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23(2):398-406.
-
(2007)
Biotechnol Prog
, vol.23
, Issue.2
, pp. 398-406
-
-
Tu, M.B.1
Chandra, R.P.2
Saddler, J.N.3
-
22
-
-
0033485705
-
Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I
-
Valjamae P, Sild V, Nutt A, Petterson G, Johansson G. 1999. Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur J Biochem 266:327-334.
-
(1999)
Eur J Biochem
, vol.266
, pp. 327-334
-
-
Valjamae, P.1
Sild, V.2
Nutt, A.3
Petterson, G.4
Johansson, G.5
-
23
-
-
33947157565
-
What is (and is not) vital to advancing cellulosic ethanol
-
Wyman CE. 2007. What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25(4):153-157.
-
(2007)
Trends Biotechnol
, vol.25
, Issue.4
, pp. 153-157
-
-
Wyman, C.E.1
-
24
-
-
70349869654
-
Effect of particle size on the rate of enzymatic hydrolysis of cellulose
-
Yeh A, Huang Y, Chen S. 2010. Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr Polym 79:192-199.
-
(2010)
Carbohydr Polym
, vol.79
, pp. 192-199
-
-
Yeh, A.1
Huang, Y.2
Chen, S.3
-
25
-
-
10844286172
-
Towards an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems
-
Zhang YHP, Lynd LR. 2004. Towards an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797-824.
-
(2004)
Biotechnol Bioeng
, vol.88
, Issue.7
, pp. 797-824
-
-
Zhang, Y.H.P.1
Lynd, L.R.2
-
26
-
-
78149249096
-
Cellulose hydrolysis in evolving substrate morphologies III: Time-scale analysis
-
Zhou W, Xu Y, Schuttler HB. 2010. Cellulose hydrolysis in evolving substrate morphologies III: Time-scale analysis. Biotechnol Bioeng 107(2):224-234.
-
(2010)
Biotechnol Bioeng
, vol.107
, Issue.2
, pp. 224-234
-
-
Zhou, W.1
Xu, Y.2
Schuttler, H.B.3
|