-
1
-
-
33947138648
-
Interpolation by ridge functions
-
Braess D., Pinkus A. Interpolation by ridge functions. J. Approx. Theory 1993, 73:218-236.
-
(1993)
J. Approx. Theory
, vol.73
, pp. 218-236
-
-
Braess, D.1
Pinkus, A.2
-
2
-
-
0027698748
-
Approximation of continuous functionals by neural networks with application to dynamic systems
-
Chen T., Chen H. Approximation of continuous functionals by neural networks with application to dynamic systems. IEEE Trans. Neural Networks 1993, 4:910-918.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 910-918
-
-
Chen, T.1
Chen, H.2
-
3
-
-
0000378922
-
Approximation by ridge functions and neural networks with one hidden layer
-
Chui C.K., Li X. Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 1992, 70:131-141.
-
(1992)
J. Approx. Theory
, vol.70
, pp. 131-141
-
-
Chui, C.K.1
Li, X.2
-
4
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 1989, 2:303-314.
-
(1989)
Math. Control Signals Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
6
-
-
0038686384
-
Approximation by neural networks with a bounded number of nodes at each level
-
Gripenberg G. Approximation by neural networks with a bounded number of nodes at each level. J. Approx. Theory 2003, 122:260-266.
-
(2003)
J. Approx. Theory
, vol.122
, pp. 260-266
-
-
Gripenberg, G.1
-
7
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks 1991, 4:251-257.
-
(1991)
Neural Networks
, vol.4
, pp. 251-257
-
-
Hornik, K.1
-
8
-
-
41549157220
-
On the representation by linear superpositions
-
Ismailov V.E. On the representation by linear superpositions. J. Approx. Theory 2008, 151:113-125.
-
(2008)
J. Approx. Theory
, vol.151
, pp. 113-125
-
-
Ismailov, V.E.1
-
10
-
-
0026479224
-
Approximation of continuous functions on Rd by linear combinations of shifted rotations of a sigmoid function with and without scaling
-
Ito Y. Approximation of continuous functions on Rd by linear combinations of shifted rotations of a sigmoid function with and without scaling. Neural Networks 1992, 5:105-115.
-
(1992)
Neural Networks
, vol.5
, pp. 105-115
-
-
Ito, Y.1
-
11
-
-
34247544840
-
Best Approximation by Linear Superpositions (Approximate Nomography)
-
American Mathematical Society, Providence, RI, Translated from the Russian manuscript by D. Khavinson
-
Khavinson S.Ya. Best Approximation by Linear Superpositions (Approximate Nomography). Transl. Math. Monogr. 1997, vol. 159. American Mathematical Society, Providence, RI, 175 pp. Translated from the Russian manuscript by D. Khavinson.
-
(1997)
Transl. Math. Monogr.
, vol.159
, pp. 175
-
-
Khavinson, S.1
-
13
-
-
0027262895
-
Multilayer feedforward networks with a non-polynomial activation function can approximate any function
-
Leshno M., Lin V.Ya., Pinkus A., Schocken S. Multilayer feedforward networks with a non-polynomial activation function can approximate any function. Neural Networks 1993, 6:861-867.
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.2
Pinkus, A.3
Schocken, S.4
-
14
-
-
0032950772
-
Lower bounds for approximation by MLP neural networks
-
Maiorov V., Pinkus A. Lower bounds for approximation by MLP neural networks. Neurocomputing 1999, 25:81-91.
-
(1999)
Neurocomputing
, vol.25
, pp. 81-91
-
-
Maiorov, V.1
Pinkus, A.2
-
15
-
-
30344432717
-
Approximation by neural networks and learning theory
-
Maiorov V. Approximation by neural networks and learning theory. J. Complexity 2006, 22:102-117.
-
(2006)
J. Complexity
, vol.22
, pp. 102-117
-
-
Maiorov, V.1
-
16
-
-
0001574595
-
Uniform approximation by neural networks
-
Makovoz Y. Uniform approximation by neural networks. J. Approx. Theory 1998, 95:215-228.
-
(1998)
J. Approx. Theory
, vol.95
, pp. 215-228
-
-
Makovoz, Y.1
-
17
-
-
0010145158
-
Uniform approximation by real functions
-
Marshall D.E., O'Farrell A.G. Uniform approximation by real functions. Fund. Math. 1979, 104:203-211.
-
(1979)
Fund. Math.
, vol.104
, pp. 203-211
-
-
Marshall, D.E.1
O'Farrell, A.G.2
-
18
-
-
3242701678
-
On the tractability of multivariate integration and approximation by neural networks
-
Mhaskar H.N. On the tractability of multivariate integration and approximation by neural networks. J. Complexity 2004, 20:561-590.
-
(2004)
J. Complexity
, vol.20
, pp. 561-590
-
-
Mhaskar, H.N.1
-
20
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8:143-195.
-
(1999)
Acta Numer.
, vol.8
, pp. 143-195
-
-
Pinkus, A.1
-
21
-
-
0009427231
-
Approximating by ridge functions
-
Vanderbilt Univ. Press, Nashville, A. Le Méhauté, C. Rabut, L.L. Schumaker (Eds.)
-
Pinkus A. Approximating by ridge functions. Surface Fitting and Multiresolution Methods 1997, 279-292. Vanderbilt Univ. Press, Nashville. A. Le Méhauté, C. Rabut, L.L. Schumaker (Eds.).
-
(1997)
Surface Fitting and Multiresolution Methods
, pp. 279-292
-
-
Pinkus, A.1
-
22
-
-
0001714565
-
Theorie generale des fonctions moyenne-periodiques
-
Schwartz L. Theorie generale des fonctions moyenne-periodiques. Ann. of Math. 1947, 48:857-928.
-
(1947)
Ann. of Math.
, vol.48
, pp. 857-928
-
-
Schwartz, L.1
-
24
-
-
51249184500
-
Uniformly separating families of functions
-
Sternfeld Y. Uniformly separating families of functions. Israel J. Math. 1978, 29:61-91.
-
(1978)
Israel J. Math.
, vol.29
, pp. 61-91
-
-
Sternfeld, Y.1
|