메뉴 건너뛰기




Volumn 389, Issue 1, 2012, Pages 72-83

Approximation by neural networks with weights varying on a finite set of directions

Author keywords

Activation function; Approximation; Density; MLP model; Neural network; Orbit; Path; Weight

Indexed keywords


EID: 84855858116     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2011.11.037     Document Type: Article
Times cited : (36)

References (25)
  • 1
    • 33947138648 scopus 로고
    • Interpolation by ridge functions
    • Braess D., Pinkus A. Interpolation by ridge functions. J. Approx. Theory 1993, 73:218-236.
    • (1993) J. Approx. Theory , vol.73 , pp. 218-236
    • Braess, D.1    Pinkus, A.2
  • 2
    • 0027698748 scopus 로고
    • Approximation of continuous functionals by neural networks with application to dynamic systems
    • Chen T., Chen H. Approximation of continuous functionals by neural networks with application to dynamic systems. IEEE Trans. Neural Networks 1993, 4:910-918.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 910-918
    • Chen, T.1    Chen, H.2
  • 3
    • 0000378922 scopus 로고
    • Approximation by ridge functions and neural networks with one hidden layer
    • Chui C.K., Li X. Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 1992, 70:131-141.
    • (1992) J. Approx. Theory , vol.70 , pp. 131-141
    • Chui, C.K.1    Li, X.2
  • 4
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 1989, 2:303-314.
    • (1989) Math. Control Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 0038686384 scopus 로고    scopus 로고
    • Approximation by neural networks with a bounded number of nodes at each level
    • Gripenberg G. Approximation by neural networks with a bounded number of nodes at each level. J. Approx. Theory 2003, 122:260-266.
    • (2003) J. Approx. Theory , vol.122 , pp. 260-266
    • Gripenberg, G.1
  • 7
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks 1991, 4:251-257.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 8
    • 41549157220 scopus 로고    scopus 로고
    • On the representation by linear superpositions
    • Ismailov V.E. On the representation by linear superpositions. J. Approx. Theory 2008, 151:113-125.
    • (2008) J. Approx. Theory , vol.151 , pp. 113-125
    • Ismailov, V.E.1
  • 10
    • 0026479224 scopus 로고
    • Approximation of continuous functions on Rd by linear combinations of shifted rotations of a sigmoid function with and without scaling
    • Ito Y. Approximation of continuous functions on Rd by linear combinations of shifted rotations of a sigmoid function with and without scaling. Neural Networks 1992, 5:105-115.
    • (1992) Neural Networks , vol.5 , pp. 105-115
    • Ito, Y.1
  • 11
    • 34247544840 scopus 로고    scopus 로고
    • Best Approximation by Linear Superpositions (Approximate Nomography)
    • American Mathematical Society, Providence, RI, Translated from the Russian manuscript by D. Khavinson
    • Khavinson S.Ya. Best Approximation by Linear Superpositions (Approximate Nomography). Transl. Math. Monogr. 1997, vol. 159. American Mathematical Society, Providence, RI, 175 pp. Translated from the Russian manuscript by D. Khavinson.
    • (1997) Transl. Math. Monogr. , vol.159 , pp. 175
    • Khavinson, S.1
  • 13
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a non-polynomial activation function can approximate any function
    • Leshno M., Lin V.Ya., Pinkus A., Schocken S. Multilayer feedforward networks with a non-polynomial activation function can approximate any function. Neural Networks 1993, 6:861-867.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.2    Pinkus, A.3    Schocken, S.4
  • 14
    • 0032950772 scopus 로고    scopus 로고
    • Lower bounds for approximation by MLP neural networks
    • Maiorov V., Pinkus A. Lower bounds for approximation by MLP neural networks. Neurocomputing 1999, 25:81-91.
    • (1999) Neurocomputing , vol.25 , pp. 81-91
    • Maiorov, V.1    Pinkus, A.2
  • 15
    • 30344432717 scopus 로고    scopus 로고
    • Approximation by neural networks and learning theory
    • Maiorov V. Approximation by neural networks and learning theory. J. Complexity 2006, 22:102-117.
    • (2006) J. Complexity , vol.22 , pp. 102-117
    • Maiorov, V.1
  • 16
    • 0001574595 scopus 로고    scopus 로고
    • Uniform approximation by neural networks
    • Makovoz Y. Uniform approximation by neural networks. J. Approx. Theory 1998, 95:215-228.
    • (1998) J. Approx. Theory , vol.95 , pp. 215-228
    • Makovoz, Y.1
  • 17
    • 0010145158 scopus 로고
    • Uniform approximation by real functions
    • Marshall D.E., O'Farrell A.G. Uniform approximation by real functions. Fund. Math. 1979, 104:203-211.
    • (1979) Fund. Math. , vol.104 , pp. 203-211
    • Marshall, D.E.1    O'Farrell, A.G.2
  • 18
    • 3242701678 scopus 로고    scopus 로고
    • On the tractability of multivariate integration and approximation by neural networks
    • Mhaskar H.N. On the tractability of multivariate integration and approximation by neural networks. J. Complexity 2004, 20:561-590.
    • (2004) J. Complexity , vol.20 , pp. 561-590
    • Mhaskar, H.N.1
  • 20
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8:143-195.
    • (1999) Acta Numer. , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 21
    • 0009427231 scopus 로고    scopus 로고
    • Approximating by ridge functions
    • Vanderbilt Univ. Press, Nashville, A. Le Méhauté, C. Rabut, L.L. Schumaker (Eds.)
    • Pinkus A. Approximating by ridge functions. Surface Fitting and Multiresolution Methods 1997, 279-292. Vanderbilt Univ. Press, Nashville. A. Le Méhauté, C. Rabut, L.L. Schumaker (Eds.).
    • (1997) Surface Fitting and Multiresolution Methods , pp. 279-292
    • Pinkus, A.1
  • 22
    • 0001714565 scopus 로고
    • Theorie generale des fonctions moyenne-periodiques
    • Schwartz L. Theorie generale des fonctions moyenne-periodiques. Ann. of Math. 1947, 48:857-928.
    • (1947) Ann. of Math. , vol.48 , pp. 857-928
    • Schwartz, L.1
  • 24
    • 51249184500 scopus 로고
    • Uniformly separating families of functions
    • Sternfeld Y. Uniformly separating families of functions. Israel J. Math. 1978, 29:61-91.
    • (1978) Israel J. Math. , vol.29 , pp. 61-91
    • Sternfeld, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.