메뉴 건너뛰기




Volumn 36, Issue 4, 2012, Pages 1477-1492

Regression and ANN models for estimating minimum value of machining performance

Author keywords

ANN; End milling; Minimum surface roughness; Modeling; Regression

Indexed keywords

ANN; ARTIFICIAL NEURAL NETWORK; DEVELOPED MODEL; EFFECTIVE PARAMETERS; END MILLING; EXPERIMENTAL DATA; MACHINING PERFORMANCE; MACHINING PROCESS; MINIMUM SURFACES; MINIMUM VALUE; MODELING APPROACH; PERFORMANCE MEASUREMENTS; QUALITY OF MACHINED SURFACE; REGRESSION;

EID: 84855668142     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2011.09.035     Document Type: Article
Times cited : (62)

References (24)
  • 1
    • 0037303115 scopus 로고    scopus 로고
    • Multiple regression and neural networks analyses in composites machining
    • Lin J.T., Bhattacharyya D., Kecman V. Multiple regression and neural networks analyses in composites machining. Compos. Sci. Technol. 2003, 63:539-548.
    • (2003) Compos. Sci. Technol. , vol.63 , pp. 539-548
    • Lin, J.T.1    Bhattacharyya, D.2    Kecman, V.3
  • 2
    • 1642335673 scopus 로고    scopus 로고
    • A study of tool life in hot machining using artificial neural networks and regression analysis method
    • Tosun N., Ozler L. A study of tool life in hot machining using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 2002, 124:99-104.
    • (2002) J. Mater. Process. Technol. , vol.124 , pp. 99-104
    • Tosun, N.1    Ozler, L.2
  • 3
    • 34547605422 scopus 로고    scopus 로고
    • Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: design of experiments and regression model
    • Kanlayasiri K., Boonmung S. Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: design of experiments and regression model. J. Mater. Process. Technol. 2007, 192-193:459-464.
    • (2007) J. Mater. Process. Technol. , pp. 459-464
    • Kanlayasiri, K.1    Boonmung, S.2
  • 4
    • 42949106000 scopus 로고    scopus 로고
    • A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method
    • Caydas U., Hascalik A. A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 2008, 202:574-582.
    • (2008) J. Mater. Process. Technol. , vol.202 , pp. 574-582
    • Caydas, U.1    Hascalik, A.2
  • 5
    • 33744544029 scopus 로고    scopus 로고
    • A review of optimization techniques in metal cutting processes
    • Mukherjee I., Ray P.K. A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 2006, 50:15-34.
    • (2006) Comput. Ind. Eng. , vol.50 , pp. 15-34
    • Mukherjee, I.1    Ray, P.K.2
  • 6
    • 12444249998 scopus 로고    scopus 로고
    • Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks
    • Ozel T., Karpat Y. Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int. J. Mach. Tools Manuf. 2005, 45:467-479.
    • (2005) Int. J. Mach. Tools Manuf. , vol.45 , pp. 467-479
    • Ozel, T.1    Karpat, Y.2
  • 7
    • 57949102475 scopus 로고    scopus 로고
    • Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm
    • Rao K.M., Rangajanardhaa G., Hanumantha R.D., Sreenivasa R.M. Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. J. Mater. Process. Technol. 2009, 209:1512-1520.
    • (2009) J. Mater. Process. Technol. , vol.209 , pp. 1512-1520
    • Rao, K.M.1    Rangajanardhaa, G.2    Hanumantha, R.D.3    Sreenivasa, R.M.4
  • 8
    • 80052115365 scopus 로고    scopus 로고
    • Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach
    • Chen H.C., Lin J.C., Yang Y.K., Tsai C.H. Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert Systems Appl. 2010, 37:7147-7153.
    • (2010) Expert Systems Appl. , vol.37 , pp. 7147-7153
    • Chen, H.C.1    Lin, J.C.2    Yang, Y.K.3    Tsai, C.H.4
  • 9
    • 56049106112 scopus 로고    scopus 로고
    • The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks
    • Nalbant M., Gökkaya H., Toktaş I., Sur G. The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks. Robot. Comput.-Int. Manuf. 2009, 25:211-223.
    • (2009) Robot. Comput.-Int. Manuf. , vol.25 , pp. 211-223
    • Nalbant, M.1    Gökkaya, H.2    Toktaş, I.3    Sur, G.4
  • 10
    • 62949132164 scopus 로고    scopus 로고
    • Prediction and control of surface roughness in CNC lathe using artificial neural network
    • Karayel D. Prediction and control of surface roughness in CNC lathe using artificial neural network. J. Mater. Process. Technol. 2009, 209:3125-3137.
    • (2009) J. Mater. Process. Technol. , vol.209 , pp. 3125-3137
    • Karayel, D.1
  • 11
    • 54049094480 scopus 로고    scopus 로고
    • Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis
    • Muthukrishnan N., Davim J.P. Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. J. Mater. Process. Technol. 2009, 209:225-232.
    • (2009) J. Mater. Process. Technol. , vol.209 , pp. 225-232
    • Muthukrishnan, N.1    Davim, J.P.2
  • 12
    • 59449101087 scopus 로고    scopus 로고
    • A genetic algorithm-based artificial neural network model for the optimization of machining processes
    • Venkatesan D., Kannan K., Saravanan R. A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Comput. Appl. 2009, 18:135-140.
    • (2009) Neural Comput. Appl. , vol.18 , pp. 135-140
    • Venkatesan, D.1    Kannan, K.2    Saravanan, R.3
  • 13
    • 67651230570 scopus 로고    scopus 로고
    • An integrated study of surface roughness for modelling and optimization of cutting parameters during end milling operation
    • Oktem H. An integrated study of surface roughness for modelling and optimization of cutting parameters during end milling operation. Int. J. Adv. Manuf. Technol. 2009, 43:852-861.
    • (2009) Int. J. Adv. Manuf. Technol. , vol.43 , pp. 852-861
    • Oktem, H.1
  • 14
    • 58349093492 scopus 로고    scopus 로고
    • Comparison of Bayesian networks and artificial neural networks for quality detection in machining process
    • Correa M., Bileza C., Pamies-Teixeira J. Comparison of Bayesian networks and artificial neural networks for quality detection in machining process. Expert Systems Appl. 2009, 36:7270-7279.
    • (2009) Expert Systems Appl. , vol.36 , pp. 7270-7279
    • Correa, M.1    Bileza, C.2    Pamies-Teixeira, J.3
  • 15
    • 70449709702 scopus 로고    scopus 로고
    • The role of stepover ratio in prediction of surface roughness in flat end milling
    • Topal E.S. The role of stepover ratio in prediction of surface roughness in flat end milling. Int. J. Mech. Sci. 2009, 51:782-789.
    • (2009) Int. J. Mech. Sci. , vol.51 , pp. 782-789
    • Topal, E.S.1
  • 16
    • 77349091539 scopus 로고    scopus 로고
    • Selection of optimum cutting condition of cobalt-based superalloy with GONNS
    • Aykut S., Demetgul M., Tansel I.N. Selection of optimum cutting condition of cobalt-based superalloy with GONNS. Int. J. Adv. Manuf. Technol. 2010, 46:957-967.
    • (2010) Int. J. Adv. Manuf. Technol. , vol.46 , pp. 957-967
    • Aykut, S.1    Demetgul, M.2    Tansel, I.N.3
  • 17
    • 77952091327 scopus 로고    scopus 로고
    • Artificial neural network for surface roughness prediction when face milling Al 7075-T7351
    • Muñoz-Escalona P., Maropoulos P.G. Artificial neural network for surface roughness prediction when face milling Al 7075-T7351. J. Mater. Eng. Perform. 2010, 19:185-193.
    • (2010) J. Mater. Eng. Perform. , vol.19 , pp. 185-193
    • Muñoz-Escalona, P.1    Maropoulos, P.G.2
  • 18
    • 71749087451 scopus 로고    scopus 로고
    • Prediction of surface roughness in the end milling machining using artificial neural network
    • Zain A.M., Haron H., Sharif S. Prediction of surface roughness in the end milling machining using artificial neural network. Expert Systems Appl. 2010, 37:1755-1768.
    • (2010) Expert Systems Appl. , vol.37 , pp. 1755-1768
    • Zain, A.M.1    Haron, H.2    Sharif, S.3
  • 19
    • 0033117056 scopus 로고    scopus 로고
    • An in-process surface recognition system based on neural networks in end milling cutting operations
    • Tsai Y.H., Chen J.C., Luu S.J. An in-process surface recognition system based on neural networks in end milling cutting operations. Int. J. Mach. Tools Manuf. 1999, 39:583-605.
    • (1999) Int. J. Mach. Tools Manuf. , vol.39 , pp. 583-605
    • Tsai, Y.H.1    Chen, J.C.2    Luu, S.J.3
  • 20
    • 84855673471 scopus 로고    scopus 로고
    • Performance Evaluation of Uncoated and Coated Carbide Tools When End Milling of Titanium Alloy Using Response Surface Methodology, Thesis Doctor of Philosophy, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia, 2008.
    • A.S. Mohruni, Performance Evaluation of Uncoated and Coated Carbide Tools When End Milling of Titanium Alloy Using Response Surface Methodology, Thesis Doctor of Philosophy, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia, 2008.
    • Mohruni, A.S.1
  • 21
    • 0024639980 scopus 로고
    • Towards enhancement of machinability data by multiple regression
    • Yeo S.H., Rahman M., Wong Y.S. Towards enhancement of machinability data by multiple regression. J. Mech. Work. Technol. 1989, 19:85-99.
    • (1989) J. Mech. Work. Technol. , vol.19 , pp. 85-99
    • Yeo, S.H.1    Rahman, M.2    Wong, Y.S.3
  • 22
    • 33746906672 scopus 로고    scopus 로고
    • A study of surface roughness in drilling using mathematical analysis and neural networks
    • Sanjay C., Jyothi C. A study of surface roughness in drilling using mathematical analysis and neural networks. Int. J. Adv. Manuf. Technol. 2006, 29:846-852.
    • (2006) Int. J. Adv. Manuf. Technol. , vol.29 , pp. 846-852
    • Sanjay, C.1    Jyothi, C.2
  • 23
    • 77249143297 scopus 로고    scopus 로고
    • Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process
    • Zain A.M., Haron H., Sharif S. Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Systems Appl. 2010, 37:4650-4659.
    • (2010) Expert Systems Appl. , vol.37 , pp. 4650-4659
    • Zain, A.M.1    Haron, H.2    Sharif, S.3
  • 24
    • 77949442701 scopus 로고    scopus 로고
    • Simulated annealing to estimate the optimal cutting conditions for minimizing surface roughness in end milling Ti-6Al-4V
    • Zain A.M., Haron H., Sharif S. Simulated annealing to estimate the optimal cutting conditions for minimizing surface roughness in end milling Ti-6Al-4V. Mach. Sci. Technol. 2010, 14:43-62.
    • (2010) Mach. Sci. Technol. , vol.14 , pp. 43-62
    • Zain, A.M.1    Haron, H.2    Sharif, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.