메뉴 건너뛰기




Volumn 7, Issue 3, 2007, Pages 1072-1083

Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbation

Author keywords

Classifier ensembles; Evidential k NN classifier; Genetic algorithms; Multi modal perturbation; Random subspace method

Indexed keywords

GENETIC ALGORITHMS; MODAL ANALYSIS; PARAMETER ESTIMATION; PERTURBATION TECHNIQUES; SOFT COMPUTING;

EID: 34047249450     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2006.10.002     Document Type: Article
Times cited : (37)

References (57)
  • 1
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: an empirical study
    • Opitz D., and Maclin R. Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11 (1999) 169-198
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 3
    • 17144447826 scopus 로고    scopus 로고
    • An information theoretic framework for weight estimation in the combination of probabilistic classifiers for speaker identification
    • Alti{dotless}nçay H., and Demirekler M. An information theoretic framework for weight estimation in the combination of probabilistic classifiers for speaker identification. Speech Commun. 30 4 (2000) 255-272
    • (2000) Speech Commun. , vol.30 , Issue.4 , pp. 255-272
    • Altinçay, H.1    Demirekler, M.2
  • 4
    • 34047269695 scopus 로고    scopus 로고
    • C.J. Whitaker, L.I. Kuncheva, Examining the relationship between majority vote accuracy and diversity in bagging and boosting, Technical Report, School of Informatics, University of Wales, Bangor, 2003.
  • 5
    • 84948152666 scopus 로고    scopus 로고
    • Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
    • Raedt L.D., and Flach P.A. (Eds)
    • Zenobi G., and Cunningham P. Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: Raedt L.D., and Flach P.A. (Eds). Proceedings of the 12th Conference on Machine Learning, Lecture Notes in Computer Science 2167 (2001) 576-587
    • (2001) Proceedings of the 12th Conference on Machine Learning, Lecture Notes in Computer Science 2167 , pp. 576-587
    • Zenobi, G.1    Cunningham, P.2
  • 6
    • 84880832861 scopus 로고    scopus 로고
    • Constructing diverse classifier ensembles using artificial training examples
    • Melville P., and Mooney R.J. Constructing diverse classifier ensembles using artificial training examples. Proceedings of the IJCAI (2003) 505-510
    • (2003) Proceedings of the IJCAI , pp. 505-510
    • Melville, P.1    Mooney, R.J.2
  • 7
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Tesauro G., Touretzky D., and Leen T. (Eds), The MIT Press
    • Krogh A., and Vedelsby J. Neural network ensembles, cross validation, and active learning. In: Tesauro G., Touretzky D., and Leen T. (Eds). Advances in Neural Information Processing Systems, vol. 7 (1995), The MIT Press 231-238
    • (1995) Advances in Neural Information Processing Systems, vol. 7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 8
    • 24644441048 scopus 로고    scopus 로고
    • Ensembling local learners through multimodal perturbation
    • Zhou Z., and Yu Y. Ensembling local learners through multimodal perturbation. IEEE Trans. Syst. Man Cyber. B: Cyber. 35 4 (2005) 725-735
    • (2005) IEEE Trans. Syst. Man Cyber. B: Cyber. , vol.35 , Issue.4 , pp. 725-735
    • Zhou, Z.1    Yu, Y.2
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 24 (1996) 123-140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 11
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 8 (1998) 832-844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 12
    • 0002338687 scopus 로고
    • A genetic algorithm tutorial
    • Whitley D. A genetic algorithm tutorial. Stat. Comput. 4 (1994) 65-85
    • (1994) Stat. Comput. , vol.4 , pp. 65-85
    • Whitley, D.1
  • 14
    • 84984302791 scopus 로고
    • Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection
    • Leardi R. Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection. J. Chemometr. 8 (1994) 65-79
    • (1994) J. Chemometr. , vol.8 , pp. 65-79
    • Leardi, R.1
  • 15
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large scale feature selection
    • Siedlecki W., and Sklansky J. A note on genetic algorithms for large scale feature selection. Pattern Recogn. Lett. 10 (1989) 335-347
    • (1989) Pattern Recogn. Lett. , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 18
    • 0030356238 scopus 로고    scopus 로고
    • Actively searching for an effective neural-network ensemble
    • Opitz D.W., and Shavlik J.W. Actively searching for an effective neural-network ensemble. Connection Sci. 8 3/4 (1996) 337-353
    • (1996) Connection Sci. , vol.8 , Issue.3-4 , pp. 337-353
    • Opitz, D.W.1    Shavlik, J.W.2
  • 19
    • 34047265088 scopus 로고    scopus 로고
    • Adaptive boosting for spatial functions with unstable driving attributes
    • Lazarevic A., Fiez T., and Obradovic Z. Adaptive boosting for spatial functions with unstable driving attributes. Intell. Data Anal. 5 (2001) 1-24
    • (2001) Intell. Data Anal. , vol.5 , pp. 1-24
    • Lazarevic, A.1    Fiez, T.2    Obradovic, Z.3
  • 20
    • 18544371643 scopus 로고    scopus 로고
    • Adapt bagging to nearest neighbor classifiers
    • Zhou Z., and Yu Y. Adapt bagging to nearest neighbor classifiers. J. Comput. Sci. Technol. 20 1 (2005) 48-54
    • (2005) J. Comput. Sci. Technol. , vol.20 , Issue.1 , pp. 48-54
    • Zhou, Z.1    Yu, Y.2
  • 21
    • 84867057507 scopus 로고    scopus 로고
    • Different ways of weakening decision trees and their impact on classification accuracy of DT combination
    • Kittler J., and Roli F. (Eds). Lecture Notes in Computer Science, Springer-Verlag Ed.
    • Latinne P., Debeir O., and Decaestecker C. Different ways of weakening decision trees and their impact on classification accuracy of DT combination. In: Kittler J., and Roli F. (Eds). Multiple Classifier Systems. Proceedings of the First International Workshop, MCS 2000. Lecture Notes in Computer Science, Springer-Verlag Ed. (2000)
    • (2000) Multiple Classifier Systems. Proceedings of the First International Workshop, MCS 2000
    • Latinne, P.1    Debeir, O.2    Decaestecker, C.3
  • 22
    • 0034314744 scopus 로고    scopus 로고
    • Designing classifier fusion systems by genetic algorithms
    • Kuncheva L.I., and Jain L.C. Designing classifier fusion systems by genetic algorithms. IEEE Trans. Evol. Comput. 4 4 (2000) 327-336
    • (2000) IEEE Trans. Evol. Comput. , vol.4 , Issue.4 , pp. 327-336
    • Kuncheva, L.I.1    Jain, L.C.2
  • 23
    • 33746672590 scopus 로고    scopus 로고
    • Genetic algorithms in classifier fusion
    • Gabrys G., and Ruta D. Genetic algorithms in classifier fusion. Appl. Soft Comput. 6 4 (2006) 337-347
    • (2006) Appl. Soft Comput. , vol.6 , Issue.4 , pp. 337-347
    • Gabrys, G.1    Ruta, D.2
  • 24
    • 12844287073 scopus 로고    scopus 로고
    • Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms
    • Alti{dotless}nçay H. Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms. Pattern Anal. Appl. 7 (2004) 285-295
    • (2004) Pattern Anal. Appl. , vol.7 , pp. 285-295
    • Altinçay, H.1
  • 25
    • 21044454599 scopus 로고    scopus 로고
    • Cooperative coevolution of artificial neural network enssembles for pattern classification
    • Pedrajas N.G., Martinez C.H., and Boyer D.O. Cooperative coevolution of artificial neural network enssembles for pattern classification. IEEE Trans. Evol. Comput. 9 3 (2005) 271-302
    • (2005) IEEE Trans. Evol. Comput. , vol.9 , Issue.3 , pp. 271-302
    • Pedrajas, N.G.1    Martinez, C.H.2    Boyer, D.O.3
  • 27
    • 0003092797 scopus 로고    scopus 로고
    • Combining nearest neighbor classifiers through multiple feature subsets
    • Morgan Kaufmann, San Francisco, CA
    • Bay S.D. Combining nearest neighbor classifiers through multiple feature subsets. Proceedings of the 15th International Conference on Machine Learning (1998), Morgan Kaufmann, San Francisco, CA 37-45
    • (1998) Proceedings of the 15th International Conference on Machine Learning , pp. 37-45
    • Bay, S.D.1
  • 29
    • 0029307876 scopus 로고
    • A k-nearest neighbor classification rule based on Dempster-Shafer theory
    • Denœux T. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cyber. 25 5 (1995) 804-813
    • (1995) IEEE Trans. Syst. Man Cyber. , vol.25 , Issue.5 , pp. 804-813
    • Denœux, T.1
  • 31
    • 0038476304 scopus 로고    scopus 로고
    • Resample and combine: an approach to improving uncertainty representation in evidential pattern classification
    • François J., Grandvalet Y., Denœux T., and Roger J.M. Resample and combine: an approach to improving uncertainty representation in evidential pattern classification. Inform. Fusion 4 (2003) 75-85
    • (2003) Inform. Fusion , vol.4 , pp. 75-85
    • François, J.1    Grandvalet, Y.2    Denœux, T.3    Roger, J.M.4
  • 32
    • 0023446625 scopus 로고
    • Implementing Dempster's rule for hierarchical evidence
    • Shafer G., and Logan R. Implementing Dempster's rule for hierarchical evidence. Artif. Intell. 33 (1987) 271-298
    • (1987) Artif. Intell. , vol.33 , pp. 271-298
    • Shafer, G.1    Logan, R.2
  • 33
    • 0036608845 scopus 로고    scopus 로고
    • Belief function combination and conflict management
    • Lefevre E., Colot O., and Vannoorenberghe P. Belief function combination and conflict management. Inform. Fusion 3 (2002) 149-162
    • (2002) Inform. Fusion , vol.3 , pp. 149-162
    • Lefevre, E.1    Colot, O.2    Vannoorenberghe, P.3
  • 34
    • 0022733771 scopus 로고
    • A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination
    • Zadeh L. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Mag. 7 (1986) 85-90
    • (1986) AI Mag. , vol.7 , pp. 85-90
    • Zadeh, L.1
  • 35
    • 0025434991 scopus 로고
    • The combination of evidence in the transferrable belief model
    • Smets P. The combination of evidence in the transferrable belief model. IEEE Trans. Pattern Anal. Mach. Intell. 12 5 (1990) 447-458
    • (1990) IEEE Trans. Pattern Anal. Mach. Intell. , vol.12 , Issue.5 , pp. 447-458
    • Smets, P.1
  • 36
    • 0023311178 scopus 로고
    • On the Dempster-Shafer framework and new combination rules
    • Yager R.R. On the Dempster-Shafer framework and new combination rules. Inform. Sci. 41 (1987) 93-138
    • (1987) Inform. Sci. , vol.41 , pp. 93-138
    • Yager, R.R.1
  • 37
    • 0033728781 scopus 로고    scopus 로고
    • Combining belief functions when evidence conflicts
    • Murphy C.K. Combining belief functions when evidence conflicts. Decision Support Syst. 29 (2000) 1-9
    • (2000) Decision Support Syst. , vol.29 , pp. 1-9
    • Murphy, C.K.1
  • 38
    • 84990553605 scopus 로고    scopus 로고
    • Representation and combination of uncertainty with belief functions and possibility measures
    • Dubois D., and Prade H. Representation and combination of uncertainty with belief functions and possibility measures. Comput. Intell. 4 (1998) 244-264
    • (1998) Comput. Intell. , vol.4 , pp. 244-264
    • Dubois, D.1    Prade, H.2
  • 39
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • Xu L., Krzyzak A., and Suen C.Y. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cyber. 22 (1992) 418-435
    • (1992) IEEE Trans. Syst. Man Cyber. , vol.22 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 40
    • 4344710606 scopus 로고    scopus 로고
    • A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence
    • Al-Ani A., and Deriche M. A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence. J. Artif. Intell. Res. 17 (2002) 333-361
    • (2002) J. Artif. Intell. Res. , vol.17 , pp. 333-361
    • Al-Ani, A.1    Deriche, M.2
  • 41
    • 0028406490 scopus 로고
    • The transferrable belief model
    • Smets P., and Kennes R. The transferrable belief model. Artif. Intell. 66 (1994) 191-234
    • (1994) Artif. Intell. , vol.66 , pp. 191-234
    • Smets, P.1    Kennes, R.2
  • 42
    • 0032215733 scopus 로고    scopus 로고
    • Introduction of neighborhood information in evidence theory and application to data fusion of radar and optical images with partial cloud cover
    • Hegarat-Mascle S.L., Bloch I., and Vidal-Madjar D. Introduction of neighborhood information in evidence theory and application to data fusion of radar and optical images with partial cloud cover. Pattern Recogn. 31 11 (1998) 1811-1823
    • (1998) Pattern Recogn. , vol.31 , Issue.11 , pp. 1811-1823
    • Hegarat-Mascle, S.L.1    Bloch, I.2    Vidal-Madjar, D.3
  • 43
    • 0032072012 scopus 로고    scopus 로고
    • An evidence-theoretic k-NN rule with parameter optimization
    • Zouhal L., and Denœux T. An evidence-theoretic k-NN rule with parameter optimization. IEEE Trans. Syst. Man Cyber. 28 (1998) 263-271
    • (1998) IEEE Trans. Syst. Man Cyber. , vol.28 , pp. 263-271
    • Zouhal, L.1    Denœux, T.2
  • 46
    • 84956988905 scopus 로고    scopus 로고
    • Application of the evolutionary algorithms for classifier selection in multiple clasifier systems with majority voting
    • Kittler J., and Roli F. (Eds). Lecture Notes in Computer Science, Springer-Verlag Ed.
    • Ruta D., and Gabrys B. Application of the evolutionary algorithms for classifier selection in multiple clasifier systems with majority voting. In: Kittler J., and Roli F. (Eds). Multiple Classifier Systems. Proceedings of the Second International Workshop, MCS 2001. Lecture Notes in Computer Science, Springer-Verlag Ed. (2001) 399-408
    • (2001) Multiple Classifier Systems. Proceedings of the Second International Workshop, MCS 2001 , pp. 399-408
    • Ruta, D.1    Gabrys, B.2
  • 47
    • 0029373189 scopus 로고
    • Optimal combinations of pattern classifiers
    • Lam L., and Suen C.Y. Optimal combinations of pattern classifiers. Pattern Recogn. Lett. 16 (1995) 945-954
    • (1995) Pattern Recogn. Lett. , vol.16 , pp. 945-954
    • Lam, L.1    Suen, C.Y.2
  • 48
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z., Wu J., and Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 137 (2002) 239-263
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.1    Wu, J.2    Tang, W.3
  • 49
    • 32044438858 scopus 로고    scopus 로고
    • Classification by evolutionary ensembles
    • Wang X., and Wang H. Classification by evolutionary ensembles. Pattern Recogn. 39 4 (2006) 595-607
    • (2006) Pattern Recogn. , vol.39 , Issue.4 , pp. 595-607
    • Wang, X.1    Wang, H.2
  • 50
    • 24944453466 scopus 로고    scopus 로고
    • Stopping criteria for ensemble of evolutionary artificial neural networks
    • Nguyen M.H., Abbass H.A., and McKay R.I. Stopping criteria for ensemble of evolutionary artificial neural networks. Appl. Soft Comput. 6 (2006) 100-107
    • (2006) Appl. Soft Comput. , vol.6 , pp. 100-107
    • Nguyen, M.H.1    Abbass, H.A.2    McKay, R.I.3
  • 52
    • 0032131295 scopus 로고    scopus 로고
    • Adaptive confidence transform based classifier combination for Chinese character recognition
    • Lin X., Ding X., Chen M., Zhang R., and Wu Y. Adaptive confidence transform based classifier combination for Chinese character recognition. Pattern Recogn. Lett. 19 (1998) 975-988
    • (1998) Pattern Recogn. Lett. , vol.19 , pp. 975-988
    • Lin, X.1    Ding, X.2    Chen, M.3    Zhang, R.4    Wu, Y.5
  • 53
    • 0003062189 scopus 로고
    • Adapting crossover in evolutionary algorithms
    • McDonnell J.R., Reynolds R.G., and Fogel D.B. (Eds), MIT Press, Cambridge, MA
    • Spears W.M. Adapting crossover in evolutionary algorithms. In: McDonnell J.R., Reynolds R.G., and Fogel D.B. (Eds). Proceedings of the Fourth Annual Conference on Evolutionary Programming (1995), MIT Press, Cambridge, MA 367-384
    • (1995) Proceedings of the Fourth Annual Conference on Evolutionary Programming , pp. 367-384
    • Spears, W.M.1
  • 54
    • 33744793789 scopus 로고    scopus 로고
    • Multi-sensor fusion: an evolutionary algorithm approach
    • Maslov I.V., and Gertner I. Multi-sensor fusion: an evolutionary algorithm approach. Inform. Fusion 7 3 (2006) 304-330
    • (2006) Inform. Fusion , vol.7 , Issue.3 , pp. 304-330
    • Maslov, I.V.1    Gertner, I.2
  • 55
    • 0000308566 scopus 로고
    • Real-coded genetic algorithms and interval-schemata
    • Morgan Kaufmann Publishers, San Mateo, CA pp. 187-202
    • Eshelman L.J., and Schaffer J.D. Real-coded genetic algorithms and interval-schemata. Foundations of Genetic Algorithms 2 (FOGA-2) (1993), Morgan Kaufmann Publishers, San Mateo, CA pp. 187-202
    • (1993) Foundations of Genetic Algorithms 2 (FOGA-2)
    • Eshelman, L.J.1    Schaffer, J.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.