-
1
-
-
0000551189
-
Popular ensemble methods: an empirical study
-
Opitz D., and Maclin R. Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11 (1999) 169-198
-
(1999)
J. Artif. Intell. Res.
, vol.11
, pp. 169-198
-
-
Opitz, D.1
Maclin, R.2
-
3
-
-
17144447826
-
An information theoretic framework for weight estimation in the combination of probabilistic classifiers for speaker identification
-
Alti{dotless}nçay H., and Demirekler M. An information theoretic framework for weight estimation in the combination of probabilistic classifiers for speaker identification. Speech Commun. 30 4 (2000) 255-272
-
(2000)
Speech Commun.
, vol.30
, Issue.4
, pp. 255-272
-
-
Altinçay, H.1
Demirekler, M.2
-
4
-
-
34047269695
-
-
C.J. Whitaker, L.I. Kuncheva, Examining the relationship between majority vote accuracy and diversity in bagging and boosting, Technical Report, School of Informatics, University of Wales, Bangor, 2003.
-
-
-
-
5
-
-
84948152666
-
Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
-
Raedt L.D., and Flach P.A. (Eds)
-
Zenobi G., and Cunningham P. Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: Raedt L.D., and Flach P.A. (Eds). Proceedings of the 12th Conference on Machine Learning, Lecture Notes in Computer Science 2167 (2001) 576-587
-
(2001)
Proceedings of the 12th Conference on Machine Learning, Lecture Notes in Computer Science 2167
, pp. 576-587
-
-
Zenobi, G.1
Cunningham, P.2
-
6
-
-
84880832861
-
Constructing diverse classifier ensembles using artificial training examples
-
Melville P., and Mooney R.J. Constructing diverse classifier ensembles using artificial training examples. Proceedings of the IJCAI (2003) 505-510
-
(2003)
Proceedings of the IJCAI
, pp. 505-510
-
-
Melville, P.1
Mooney, R.J.2
-
7
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
Tesauro G., Touretzky D., and Leen T. (Eds), The MIT Press
-
Krogh A., and Vedelsby J. Neural network ensembles, cross validation, and active learning. In: Tesauro G., Touretzky D., and Leen T. (Eds). Advances in Neural Information Processing Systems, vol. 7 (1995), The MIT Press 231-238
-
(1995)
Advances in Neural Information Processing Systems, vol. 7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
8
-
-
24644441048
-
Ensembling local learners through multimodal perturbation
-
Zhou Z., and Yu Y. Ensembling local learners through multimodal perturbation. IEEE Trans. Syst. Man Cyber. B: Cyber. 35 4 (2005) 725-735
-
(2005)
IEEE Trans. Syst. Man Cyber. B: Cyber.
, vol.35
, Issue.4
, pp. 725-735
-
-
Zhou, Z.1
Yu, Y.2
-
9
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 24 (1996) 123-140
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
11
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 8 (1998) 832-844
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
12
-
-
0002338687
-
A genetic algorithm tutorial
-
Whitley D. A genetic algorithm tutorial. Stat. Comput. 4 (1994) 65-85
-
(1994)
Stat. Comput.
, vol.4
, pp. 65-85
-
-
Whitley, D.1
-
14
-
-
84984302791
-
Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection
-
Leardi R. Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection. J. Chemometr. 8 (1994) 65-79
-
(1994)
J. Chemometr.
, vol.8
, pp. 65-79
-
-
Leardi, R.1
-
15
-
-
0024895461
-
A note on genetic algorithms for large scale feature selection
-
Siedlecki W., and Sklansky J. A note on genetic algorithms for large scale feature selection. Pattern Recogn. Lett. 10 (1989) 335-347
-
(1989)
Pattern Recogn. Lett.
, vol.10
, pp. 335-347
-
-
Siedlecki, W.1
Sklansky, J.2
-
17
-
-
0042632506
-
Multistage classifiers optimized by neural networks and genetic algorithms
-
Benediktsson J.A., Sveinsson J.R., Ingimundarson J.I., Sigurdsson H.S., and Ersoy O.K. Multistage classifiers optimized by neural networks and genetic algorithms. Nonlinear Anal. Theory Methods Appl. 30 3 (1997) 1323-1334
-
(1997)
Nonlinear Anal. Theory Methods Appl.
, vol.30
, Issue.3
, pp. 1323-1334
-
-
Benediktsson, J.A.1
Sveinsson, J.R.2
Ingimundarson, J.I.3
Sigurdsson, H.S.4
Ersoy, O.K.5
-
18
-
-
0030356238
-
Actively searching for an effective neural-network ensemble
-
Opitz D.W., and Shavlik J.W. Actively searching for an effective neural-network ensemble. Connection Sci. 8 3/4 (1996) 337-353
-
(1996)
Connection Sci.
, vol.8
, Issue.3-4
, pp. 337-353
-
-
Opitz, D.W.1
Shavlik, J.W.2
-
19
-
-
34047265088
-
Adaptive boosting for spatial functions with unstable driving attributes
-
Lazarevic A., Fiez T., and Obradovic Z. Adaptive boosting for spatial functions with unstable driving attributes. Intell. Data Anal. 5 (2001) 1-24
-
(2001)
Intell. Data Anal.
, vol.5
, pp. 1-24
-
-
Lazarevic, A.1
Fiez, T.2
Obradovic, Z.3
-
20
-
-
18544371643
-
Adapt bagging to nearest neighbor classifiers
-
Zhou Z., and Yu Y. Adapt bagging to nearest neighbor classifiers. J. Comput. Sci. Technol. 20 1 (2005) 48-54
-
(2005)
J. Comput. Sci. Technol.
, vol.20
, Issue.1
, pp. 48-54
-
-
Zhou, Z.1
Yu, Y.2
-
21
-
-
84867057507
-
Different ways of weakening decision trees and their impact on classification accuracy of DT combination
-
Kittler J., and Roli F. (Eds). Lecture Notes in Computer Science, Springer-Verlag Ed.
-
Latinne P., Debeir O., and Decaestecker C. Different ways of weakening decision trees and their impact on classification accuracy of DT combination. In: Kittler J., and Roli F. (Eds). Multiple Classifier Systems. Proceedings of the First International Workshop, MCS 2000. Lecture Notes in Computer Science, Springer-Verlag Ed. (2000)
-
(2000)
Multiple Classifier Systems. Proceedings of the First International Workshop, MCS 2000
-
-
Latinne, P.1
Debeir, O.2
Decaestecker, C.3
-
22
-
-
0034314744
-
Designing classifier fusion systems by genetic algorithms
-
Kuncheva L.I., and Jain L.C. Designing classifier fusion systems by genetic algorithms. IEEE Trans. Evol. Comput. 4 4 (2000) 327-336
-
(2000)
IEEE Trans. Evol. Comput.
, vol.4
, Issue.4
, pp. 327-336
-
-
Kuncheva, L.I.1
Jain, L.C.2
-
23
-
-
33746672590
-
Genetic algorithms in classifier fusion
-
Gabrys G., and Ruta D. Genetic algorithms in classifier fusion. Appl. Soft Comput. 6 4 (2006) 337-347
-
(2006)
Appl. Soft Comput.
, vol.6
, Issue.4
, pp. 337-347
-
-
Gabrys, G.1
Ruta, D.2
-
24
-
-
12844287073
-
Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms
-
Alti{dotless}nçay H. Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms. Pattern Anal. Appl. 7 (2004) 285-295
-
(2004)
Pattern Anal. Appl.
, vol.7
, pp. 285-295
-
-
Altinçay, H.1
-
25
-
-
21044454599
-
Cooperative coevolution of artificial neural network enssembles for pattern classification
-
Pedrajas N.G., Martinez C.H., and Boyer D.O. Cooperative coevolution of artificial neural network enssembles for pattern classification. IEEE Trans. Evol. Comput. 9 3 (2005) 271-302
-
(2005)
IEEE Trans. Evol. Comput.
, vol.9
, Issue.3
, pp. 271-302
-
-
Pedrajas, N.G.1
Martinez, C.H.2
Boyer, D.O.3
-
26
-
-
33750367353
-
-
Springer, Germany
-
Bao Y., Ishii N., Du X., Yang Z., Everson R., and Yin H. Combining Multiple k-Nearest Neighbor Classifiers Using Different Distance Functions. Lecture Notes in Computer Science, vol. 3177 (2004), Springer, Germany 631-641
-
(2004)
Combining Multiple k-Nearest Neighbor Classifiers Using Different Distance Functions. Lecture Notes in Computer Science, vol. 3177
, pp. 631-641
-
-
Bao, Y.1
Ishii, N.2
Du, X.3
Yang, Z.4
Everson, R.5
Yin, H.6
-
27
-
-
0003092797
-
Combining nearest neighbor classifiers through multiple feature subsets
-
Morgan Kaufmann, San Francisco, CA
-
Bay S.D. Combining nearest neighbor classifiers through multiple feature subsets. Proceedings of the 15th International Conference on Machine Learning (1998), Morgan Kaufmann, San Francisco, CA 37-45
-
(1998)
Proceedings of the 15th International Conference on Machine Learning
, pp. 37-45
-
-
Bay, S.D.1
-
28
-
-
84947786689
-
-
Springer, Germany
-
Ho T.K., Amin A., Dori D., Pudil P., and Freeman H. Nearest neighbors in random subspaces. Lecture Notes in Computer Science (1998), Springer, Germany 640-648
-
(1998)
Nearest neighbors in random subspaces. Lecture Notes in Computer Science
, pp. 640-648
-
-
Ho, T.K.1
Amin, A.2
Dori, D.3
Pudil, P.4
Freeman, H.5
-
29
-
-
0029307876
-
A k-nearest neighbor classification rule based on Dempster-Shafer theory
-
Denœux T. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cyber. 25 5 (1995) 804-813
-
(1995)
IEEE Trans. Syst. Man Cyber.
, vol.25
, Issue.5
, pp. 804-813
-
-
Denœux, T.1
-
31
-
-
0038476304
-
Resample and combine: an approach to improving uncertainty representation in evidential pattern classification
-
François J., Grandvalet Y., Denœux T., and Roger J.M. Resample and combine: an approach to improving uncertainty representation in evidential pattern classification. Inform. Fusion 4 (2003) 75-85
-
(2003)
Inform. Fusion
, vol.4
, pp. 75-85
-
-
François, J.1
Grandvalet, Y.2
Denœux, T.3
Roger, J.M.4
-
32
-
-
0023446625
-
Implementing Dempster's rule for hierarchical evidence
-
Shafer G., and Logan R. Implementing Dempster's rule for hierarchical evidence. Artif. Intell. 33 (1987) 271-298
-
(1987)
Artif. Intell.
, vol.33
, pp. 271-298
-
-
Shafer, G.1
Logan, R.2
-
33
-
-
0036608845
-
Belief function combination and conflict management
-
Lefevre E., Colot O., and Vannoorenberghe P. Belief function combination and conflict management. Inform. Fusion 3 (2002) 149-162
-
(2002)
Inform. Fusion
, vol.3
, pp. 149-162
-
-
Lefevre, E.1
Colot, O.2
Vannoorenberghe, P.3
-
34
-
-
0022733771
-
A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination
-
Zadeh L. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Mag. 7 (1986) 85-90
-
(1986)
AI Mag.
, vol.7
, pp. 85-90
-
-
Zadeh, L.1
-
35
-
-
0025434991
-
The combination of evidence in the transferrable belief model
-
Smets P. The combination of evidence in the transferrable belief model. IEEE Trans. Pattern Anal. Mach. Intell. 12 5 (1990) 447-458
-
(1990)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.12
, Issue.5
, pp. 447-458
-
-
Smets, P.1
-
36
-
-
0023311178
-
On the Dempster-Shafer framework and new combination rules
-
Yager R.R. On the Dempster-Shafer framework and new combination rules. Inform. Sci. 41 (1987) 93-138
-
(1987)
Inform. Sci.
, vol.41
, pp. 93-138
-
-
Yager, R.R.1
-
37
-
-
0033728781
-
Combining belief functions when evidence conflicts
-
Murphy C.K. Combining belief functions when evidence conflicts. Decision Support Syst. 29 (2000) 1-9
-
(2000)
Decision Support Syst.
, vol.29
, pp. 1-9
-
-
Murphy, C.K.1
-
38
-
-
84990553605
-
Representation and combination of uncertainty with belief functions and possibility measures
-
Dubois D., and Prade H. Representation and combination of uncertainty with belief functions and possibility measures. Comput. Intell. 4 (1998) 244-264
-
(1998)
Comput. Intell.
, vol.4
, pp. 244-264
-
-
Dubois, D.1
Prade, H.2
-
39
-
-
0026860706
-
Methods of combining multiple classifiers and their applications to handwriting recognition
-
Xu L., Krzyzak A., and Suen C.Y. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cyber. 22 (1992) 418-435
-
(1992)
IEEE Trans. Syst. Man Cyber.
, vol.22
, pp. 418-435
-
-
Xu, L.1
Krzyzak, A.2
Suen, C.Y.3
-
40
-
-
4344710606
-
A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence
-
Al-Ani A., and Deriche M. A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence. J. Artif. Intell. Res. 17 (2002) 333-361
-
(2002)
J. Artif. Intell. Res.
, vol.17
, pp. 333-361
-
-
Al-Ani, A.1
Deriche, M.2
-
41
-
-
0028406490
-
The transferrable belief model
-
Smets P., and Kennes R. The transferrable belief model. Artif. Intell. 66 (1994) 191-234
-
(1994)
Artif. Intell.
, vol.66
, pp. 191-234
-
-
Smets, P.1
Kennes, R.2
-
42
-
-
0032215733
-
Introduction of neighborhood information in evidence theory and application to data fusion of radar and optical images with partial cloud cover
-
Hegarat-Mascle S.L., Bloch I., and Vidal-Madjar D. Introduction of neighborhood information in evidence theory and application to data fusion of radar and optical images with partial cloud cover. Pattern Recogn. 31 11 (1998) 1811-1823
-
(1998)
Pattern Recogn.
, vol.31
, Issue.11
, pp. 1811-1823
-
-
Hegarat-Mascle, S.L.1
Bloch, I.2
Vidal-Madjar, D.3
-
43
-
-
0032072012
-
An evidence-theoretic k-NN rule with parameter optimization
-
Zouhal L., and Denœux T. An evidence-theoretic k-NN rule with parameter optimization. IEEE Trans. Syst. Man Cyber. 28 (1998) 263-271
-
(1998)
IEEE Trans. Syst. Man Cyber.
, vol.28
, pp. 263-271
-
-
Zouhal, L.1
Denœux, T.2
-
46
-
-
84956988905
-
Application of the evolutionary algorithms for classifier selection in multiple clasifier systems with majority voting
-
Kittler J., and Roli F. (Eds). Lecture Notes in Computer Science, Springer-Verlag Ed.
-
Ruta D., and Gabrys B. Application of the evolutionary algorithms for classifier selection in multiple clasifier systems with majority voting. In: Kittler J., and Roli F. (Eds). Multiple Classifier Systems. Proceedings of the Second International Workshop, MCS 2001. Lecture Notes in Computer Science, Springer-Verlag Ed. (2001) 399-408
-
(2001)
Multiple Classifier Systems. Proceedings of the Second International Workshop, MCS 2001
, pp. 399-408
-
-
Ruta, D.1
Gabrys, B.2
-
47
-
-
0029373189
-
Optimal combinations of pattern classifiers
-
Lam L., and Suen C.Y. Optimal combinations of pattern classifiers. Pattern Recogn. Lett. 16 (1995) 945-954
-
(1995)
Pattern Recogn. Lett.
, vol.16
, pp. 945-954
-
-
Lam, L.1
Suen, C.Y.2
-
48
-
-
0036567392
-
Ensembling neural networks: many could be better than all
-
Zhou Z., Wu J., and Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 137 (2002) 239-263
-
(2002)
Artif. Intell.
, vol.137
, pp. 239-263
-
-
Zhou, Z.1
Wu, J.2
Tang, W.3
-
49
-
-
32044438858
-
Classification by evolutionary ensembles
-
Wang X., and Wang H. Classification by evolutionary ensembles. Pattern Recogn. 39 4 (2006) 595-607
-
(2006)
Pattern Recogn.
, vol.39
, Issue.4
, pp. 595-607
-
-
Wang, X.1
Wang, H.2
-
50
-
-
24944453466
-
Stopping criteria for ensemble of evolutionary artificial neural networks
-
Nguyen M.H., Abbass H.A., and McKay R.I. Stopping criteria for ensemble of evolutionary artificial neural networks. Appl. Soft Comput. 6 (2006) 100-107
-
(2006)
Appl. Soft Comput.
, vol.6
, pp. 100-107
-
-
Nguyen, M.H.1
Abbass, H.A.2
McKay, R.I.3
-
52
-
-
0032131295
-
Adaptive confidence transform based classifier combination for Chinese character recognition
-
Lin X., Ding X., Chen M., Zhang R., and Wu Y. Adaptive confidence transform based classifier combination for Chinese character recognition. Pattern Recogn. Lett. 19 (1998) 975-988
-
(1998)
Pattern Recogn. Lett.
, vol.19
, pp. 975-988
-
-
Lin, X.1
Ding, X.2
Chen, M.3
Zhang, R.4
Wu, Y.5
-
53
-
-
0003062189
-
Adapting crossover in evolutionary algorithms
-
McDonnell J.R., Reynolds R.G., and Fogel D.B. (Eds), MIT Press, Cambridge, MA
-
Spears W.M. Adapting crossover in evolutionary algorithms. In: McDonnell J.R., Reynolds R.G., and Fogel D.B. (Eds). Proceedings of the Fourth Annual Conference on Evolutionary Programming (1995), MIT Press, Cambridge, MA 367-384
-
(1995)
Proceedings of the Fourth Annual Conference on Evolutionary Programming
, pp. 367-384
-
-
Spears, W.M.1
-
54
-
-
33744793789
-
Multi-sensor fusion: an evolutionary algorithm approach
-
Maslov I.V., and Gertner I. Multi-sensor fusion: an evolutionary algorithm approach. Inform. Fusion 7 3 (2006) 304-330
-
(2006)
Inform. Fusion
, vol.7
, Issue.3
, pp. 304-330
-
-
Maslov, I.V.1
Gertner, I.2
-
55
-
-
0000308566
-
Real-coded genetic algorithms and interval-schemata
-
Morgan Kaufmann Publishers, San Mateo, CA pp. 187-202
-
Eshelman L.J., and Schaffer J.D. Real-coded genetic algorithms and interval-schemata. Foundations of Genetic Algorithms 2 (FOGA-2) (1993), Morgan Kaufmann Publishers, San Mateo, CA pp. 187-202
-
(1993)
Foundations of Genetic Algorithms 2 (FOGA-2)
-
-
Eshelman, L.J.1
Schaffer, J.D.2
|