메뉴 건너뛰기




Volumn 30, Issue 3, 2011, Pages 639-653

Differential transformation method for solving one-space-dimensional telegraph equation

Author keywords

Differential transformation method; Spectral method; Taylor expansion; Telegraph equation

Indexed keywords

TELEGRAPH;

EID: 84855303689     PISSN: 22383603     EISSN: 18070302     Source Type: Journal    
DOI: 10.1590/S1807-03022011000300009     Document Type: Article
Times cited : (28)

References (24)
  • 2
    • 0006035689 scopus 로고    scopus 로고
    • Solving partial differential equations by two dimensional differential transform method
    • C.K. Chen and S.H. Ho, Solving partial differential equations by two dimensional differential transform method. Appl. Math. Comput., 106 (1999), 171-179.
    • (1999) Appl. Math. Comput. , vol.106 , pp. 171-179
    • Chen, C.K.1    Ho, S.H.2
  • 3
    • 0141961581 scopus 로고    scopus 로고
    • Solutions of the systems of differential equations by differential transform method
    • F. Ayaz, Solutions of the systems of differential equations by differential transform method. Appl. Math. Comput., 147 (2004), 547-567.
    • (2004) Appl. Math. Comput. , vol.147 , pp. 547-567
    • Ayaz, F.1
  • 4
    • 77950188349 scopus 로고    scopus 로고
    • Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method
    • R. Abazari and A. Borhanifar, Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method. Comput. Math. Appl., 59 (2010), 2711-2722.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 2711-2722
    • Abazari, R.1    Borhanifar, A.2
  • 5
    • 0006035689 scopus 로고    scopus 로고
    • Solving partial differantial equations by two dimensional differential transformation method
    • C.K. Chen, Solving partial differantial equations by two dimensional differential transformation method. Appl. Math. Comput., 106 (1999), 171-179.
    • (1999) Appl. Math. Comput. , vol.106 , pp. 171-179
    • Chen, C.K.1
  • 6
    • 0035877251 scopus 로고    scopus 로고
    • Two-dimensional differential transformation method for partial differantial equations
    • M.J. Jang and C.K. Chen, Two-dimensional differential transformation method for partial differantial equations. Appl. Math. Comput., 121 (2001), 261-270.
    • (2001) Appl. Math. Comput. , vol.121 , pp. 261-270
    • Jang, M.J.1    Chen, C.K.2
  • 7
    • 67349150680 scopus 로고    scopus 로고
    • Solitary wave solutions for the KDV and mKDV equations by differential transformation method
    • F. Kangalgil and F. Ayaz, Solitary wave solutions for the KDV and mKDV equations by differential transformation method. Choas Solitons Fractals, 41 (2009), 464-472.
    • (2009) Choas Solitons Fractals , vol.41 , pp. 464-472
    • Kangalgil, F.1    Ayaz, F.2
  • 8
    • 0000332692 scopus 로고
    • On a quasilinear parabolic equation occurring in aerodynamics
    • J.D. Cole, On a quasilinear parabolic equation occurring in aerodynamics. Quart. Appl. Math., 9 (1951), 225-236.
    • (1951) Quart. Appl. Math. , vol.9 , pp. 225-236
    • Cole, J.D.1
  • 9
    • 33644589650 scopus 로고    scopus 로고
    • Solution of difference equations by using differential transformation method
    • A. Arikoglu and I. Ozkol, Solution of difference equations by using differential transformation method. Appl. Math. Comput., 174 (2006), 1216-1228.
    • (2006) Appl. Math. Comput. , vol.174 , pp. 1216-1228
    • Arikoglu, A.1    Ozkol, I.2
  • 10
    • 50949099510 scopus 로고    scopus 로고
    • Algorithms for nonlinear fractional partial differantial equations: A selection of numerical methods
    • S. Momani, Z. Odibat and I. Hashim, Algorithms for nonlinear fractional partial differantial equations: A selection of numerical methods. Topol. Method Nonlinear Anal., 31 (2008), 211-226.
    • (2008) Topol. Method Nonlinear Anal. , vol.31 , pp. 211-226
    • Momani, S.1    Odibat, Z.2    Hashim, I.3
  • 11
    • 34250215244 scopus 로고    scopus 로고
    • Solution of fractional differential equations by using differential transformation method
    • A. Arikoglu and I. Ozkol, Solution of fractional differential equations by using differential transformation method. Chaos Solitons Fractals, 34 (2007), 1473- 1481.
    • (2007) Chaos Solitons Fractals , vol.34 , pp. 1473-1481
    • Arikoglu, A.1    Ozkol, I.2
  • 12
    • 79951851926 scopus 로고    scopus 로고
    • A matrix formulation to the wave equation with nonlocal boundary condition
    • H.R. Ghehsareh, B. Soltanalizadeh and S. Abbasbandy, A matrix formulation to the wave equation with nonlocal boundary condition. Inter. J. Comput. Math., 88 (2011), 1681-1696.
    • (2011) Inter. J. Comput. Math. , vol.88 , pp. 1681-1696
    • Ghehsareh, H.R.1    Soltanalizadeh, B.2    Abbasbandy, S.3
  • 13
    • 79951851934 scopus 로고    scopus 로고
    • Numerical analysis of the one-dimensional Heat equation subject to a boundary integral specification
    • B. Soltanalizadeh, Numerical analysis of the one-dimensional Heat equation subject to a boundary integral specification. Optics Communications, 284 (2011), 2109-2112.
    • (2011) Optics Communications , vol.284 , pp. 2109-2112
    • Soltanalizadeh, B.1
  • 14
    • 84855334427 scopus 로고    scopus 로고
    • Numerical analysis of the linear and nonlinear Kuramoto-Sivashinsky equation by using Differential Transformation method
    • B. Soltanalizadeh and M. Zarebnia, Numerical analysis of the linear and nonlinear Kuramoto-Sivashinsky equation by using Differential Transformation method. Inter. J. Appl. Math. Mechanics, 7(12) (2011), 63-72.
    • (2011) Inter. J. Appl. Math. Mechanics , vol.7 , Issue.12 , pp. 63-72
    • Soltanalizadeh, B.1    Zarebnia, M.2
  • 16
    • 34250888790 scopus 로고    scopus 로고
    • Computing the variable coefficient telegraph equation using a discrete eigenfunctions method
    • R. Aloy, M.C. Casaban, L.A. Caudillo-Mata and L. Jodar, Computing the variable coefficient telegraph equation using a discrete eigenfunctions method. Comput. Math. Appl., 54 (2007), 448-458.
    • (2007) Comput. Math. Appl. , vol.54 , pp. 448-458
    • Aloy, R.1    Casaban, M.C.2    Caudillo-Mata, L.A.3    Jodar, L.4
  • 17
    • 0035500142 scopus 로고    scopus 로고
    • An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation
    • R.K. Mohanty and M.K. Jain, An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation. Numer Methods Partial Differential Equations, 17 (2001), 684-688.
    • (2001) Numer Methods Partial Differential Equations , vol.17 , pp. 684-688
    • Mohanty, R.K.1    Jain, M.K.2
  • 18
    • 0942302128 scopus 로고    scopus 로고
    • An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions
    • R.K. Mohanty, M.K. Jain and U. Arora, An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions. Int. J. Comput. Math., 79 (2002), 133-142.
    • (2002) Int. J. Comput. Math. , vol.79 , pp. 133-142
    • Mohanty, R.K.1    Jain, M.K.2    Arora, U.3
  • 19
    • 63349111368 scopus 로고    scopus 로고
    • Solving a class of two-dimensional linear and nonlinear Volterra integral equations by the differential transform method
    • A. Tari, M.Y. Rahimi, S. Shahmoradb and F. Talati, Solving a class of two-dimensional linear and nonlinear Volterra integral equations by the differential transform method. J. Comput. Appl. Math., 228 (2009), 70-76.
    • (2009) J. Comput. Appl. Math. , vol.228 , pp. 70-76
    • Tari, A.1    Rahimi, M.Y.2    Shahmoradb, S.3    Talati, F.4
  • 20
    • 77949488873 scopus 로고    scopus 로고
    • Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions
    • D. Nazari and S. Shahmorad, Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions. J. Comput. Appl. Math., 234 (2010), 883-891.
    • (2010) J. Comput. Appl. Math. , vol.234 , pp. 883-891
    • Nazari, D.1    Shahmorad, S.2
  • 21
    • 78651374500 scopus 로고    scopus 로고
    • Exact solutions for non-linear Schrödinger equations by differential transformation method
    • A. Borhanifar and R. Abazari, Exact solutions for non-linear Schrödinger equations by differential transformation method. J. Appl. Math. Comput., 35 (2011), 37-51.
    • (2011) J. Appl. Math. Comput. , vol.35 , pp. 37-51
    • Borhanifar, A.1    Abazari, R.2
  • 22
    • 34247184613 scopus 로고    scopus 로고
    • Unconditionally stable difference schemes for a one-spacedimensional linear hyperbolic equation
    • F. Gao and C.M. Chi, Unconditionally stable difference schemes for a one-spacedimensional linear hyperbolic equation. Appl. Math. Comput., 187 (2007), 1272- 1276.
    • (2007) Appl. Math. Comput. , vol.187 , pp. 1272-1276
    • Gao, F.1    Chi, C.M.2
  • 23
    • 77949263024 scopus 로고    scopus 로고
    • Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method
    • A. Borhanifar and R. Abazari, Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method. Optics Communications, 283 (2010), 2026-2031.
    • (2010) Optics Communications , vol.283 , pp. 2026-2031
    • Borhanifar, A.1    Abazari, R.2
  • 24
    • 49749140424 scopus 로고    scopus 로고
    • Differential transformation method for solving Volterra integral equations with separable kernels
    • Z.M. Odibat, Differential transformation method for solving Volterra integral equations with separable kernels. Math. Comput. Modeling, 48 (2008), 1144- 1149.
    • (2008) Math. Comput. Modeling , vol.48 , pp. 1144-1149
    • Odibat, Z.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.