-
1
-
-
37549014555
-
Analytic treatment of linear and nonlinear Schrödinger equations: A study with homotopy-perturbation and Adomian decomposition methods
-
doi: 10.1016/j.physleta.2007.07.065
-
Sadighi, A., Ganji, D.D.: Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods. Phys. Lett. A (2007). doi: 10.1016/j.physleta.2007.07.065
-
(2007)
Phys. Lett. A
-
-
Sadighi, A.1
Ganji, D.D.2
-
2
-
-
40649100751
-
A study on linear and nonlinear Schrödinger equations by the variational iteration method
-
1148.35353 10.1016/j.chaos.2006.10.009 2411539
-
A. Wazwaz 2008 A study on linear and nonlinear Schrödinger equations by the variational iteration method Chaos Solitons Fractals 37 1136 1142 1148.35353 10.1016/j.chaos.2006.10.009 2411539
-
(2008)
Chaos Solitons Fractals
, vol.37
, pp. 1136-1142
-
-
Wazwaz, A.1
-
3
-
-
24144474668
-
Difference scheme for three-frequency interaction of femtosecond pulses in the presence of nonlinear response dispersion
-
Borhanifar, A., Volkov, A.G., Trofimov, V.A.: Difference scheme for three-frequency interaction of femtosecond pulses in the presence of nonlinear response dispersion. Comput. Math. Model. 16(3) (2005)
-
(2005)
Comput. Math. Model.
, vol.16
, Issue.3
-
-
Borhanifar, A.1
Volkov, A.G.2
Trofimov, V.A.3
-
4
-
-
65049085933
-
New periodic and soliton solutions by application of Exp-function method for nonlinear evolution equations
-
10.1016/j.cam.2008.10.052 1160.37408
-
A. Borhanifar M.M. Kabir 2008 New periodic and soliton solutions by application of Exp-function method for nonlinear evolution equations J. Comput. Appl. Math. 10.1016/j.cam.2008.10.052 1160.37408
-
(2008)
J. Comput. Appl. Math.
-
-
Borhanifar, A.1
Kabir, M.M.2
-
5
-
-
67249160082
-
Chaotic analysis and control of microcandilevers with PD feedback using differential transformation method
-
C.C. Wang H.T. Yau 2009 Chaotic analysis and control of microcandilevers with PD feedback using differential transformation method Int. J. Nonlinear Sci. Numer. Simul. 10 4 425 444
-
(2009)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.10
, Issue.4
, pp. 425-444
-
-
Wang, C.C.1
Yau, H.T.2
-
6
-
-
34249875994
-
Approximate solution of generalized pantograph equations by the differential transformation method
-
Y. Keskin A. Kurnaz M.E. Kiris 2007 Approximate solution of generalized pantograph equations by the differential transformation method Int. J. Nonlinear Sci. Numer. Simul. 8 2 159 164
-
(2007)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.8
, Issue.2
, pp. 159-164
-
-
Keskin, Y.1
Kurnaz, A.2
Kiris, M.E.3
-
7
-
-
67650395560
-
New periodic and soliton wave solutions for the generalized Zakharov 3 system and (2+1)-dimensional Nizhnik-Novikov-Veselov system
-
10.1016/j.chaos.2009.03.064
-
A. Borhanifar M.M. Kabir L. Maryam Vahdat 2009 New periodic and soliton wave solutions for the generalized Zakharov 3 system and (2+1)-dimensional Nizhnik-Novikov-Veselov system Chaos Solitons Fractals 10.1016/j.chaos.2009.03. 064
-
(2009)
Chaos Solitons Fractals
-
-
Borhanifar, A.1
Kabir, M.M.2
Maryam Vahdat, L.3
-
8
-
-
47749109857
-
Exact travelling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method
-
10.1088/0031-8949/78/01/015013 2447535
-
C.Q. Dai Y.Y. Wang 2008 Exact travelling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method Phys. Scr. 78 015 013 10.1088/0031-8949/78/01/015013 2447535
-
(2008)
Phys. Scr.
, vol.78
, pp. 015-013
-
-
Dai, C.Q.1
Wang, Y.Y.2
-
9
-
-
46649116095
-
Application of the homotopy perturbation method to linear and nonlinear Schrödinger equations
-
M.M. Mousa S. Ragab 2008 Application of the homotopy perturbation method to linear and nonlinear Schrödinger equations Z. Naturforsch. Sect. A 63 140 144
-
(2008)
Z. Naturforsch. Sect. A
, vol.63
, pp. 140-144
-
-
Mousa, M.M.1
Ragab, S.2
-
10
-
-
34247862175
-
Exact solutions for non-linear Schrödinger equations by He's homotopy perturbation method
-
10.1016/j.physleta.2007.01.060 2308771
-
J. Biazar H. Ghazvini 2007 Exact solutions for non-linear Schrödinger equations by He's homotopy perturbation method Phys. Lett. A 366 79 84 10.1016/j.physleta.2007.01.060 2308771
-
(2007)
Phys. Lett. A
, vol.366
, pp. 79-84
-
-
Biazar, J.1
Ghazvini, H.2
-
11
-
-
55549112263
-
Explicit series solutions of some linear and nonlinear Schrödinger equations via the homotopy analysis method
-
10.1016/j.cnsns.2008.01.008
-
A.K. Alomari M.S.M. Noorani R. Nazar 2008 Explicit series solutions of some linear and nonlinear Schrödinger equations via the homotopy analysis method Commun. Nonlinear Sci. Numer. Simul. 10.1016/j.cnsns.2008.01.008
-
(2008)
Commun. Nonlinear Sci. Numer. Simul.
-
-
Alomari, A.K.1
Noorani, M.S.M.2
Nazar, R.3
-
12
-
-
33750368073
-
Variational principles for coupled nonlinear Schrödinger equations
-
05321888 10.1016/j.physleta.2006.07.026 2288110
-
L. Xu 2006 Variational principles for coupled nonlinear Schrödinger equations Phys. Lett. A 359 627 629 05321888 10.1016/j.physleta.2006.07.026 2288110
-
(2006)
Phys. Lett. A
, vol.359
, pp. 627-629
-
-
Xu, L.1
-
13
-
-
32644457439
-
The use of variational iteration method, differential transform method and Adomian decomposition method for solving different type of nonlinear partial differential equations
-
2197923
-
N. Bildik A. Konuralp 2006 The use of variational iteration method, differential transform method and Adomian decomposition method for solving different type of nonlinear partial differential equations Int. J. Nonlinear Sci. Numer. Simul. 7 1 65 70 2197923
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.7
, Issue.1
, pp. 65-70
-
-
Bildik, N.1
Konuralp, A.2
-
14
-
-
0038374490
-
A new approach to the cubic Schrödinger equation: An application of the decomposition technique
-
0940.35187 10.1016/S0096-3003(97)10147-3 1643115
-
S.A. Khuri 1998 A new approach to the cubic Schrödinger equation: an application of the decomposition technique Appl. Math. Comput. 97 251 254 0940.35187 10.1016/S0096-3003(97)10147-3 1643115
-
(1998)
Appl. Math. Comput.
, vol.97
, pp. 251-254
-
-
Khuri, S.A.1
-
16
-
-
0141961581
-
Solutions of the system of differential equations by differential transform method
-
1032.35011 10.1016/S0096-3003(02)00794-4 2012593
-
F. Ayaz 2004 Solutions of the system of differential equations by differential transform method Appl. Math. Comput. 147 547 567 1032.35011 10.1016/S0096-3003(02)00794-4 2012593
-
(2004)
Appl. Math. Comput.
, vol.147
, pp. 547-567
-
-
Ayaz, F.1
-
17
-
-
55549140509
-
Application of the differential transformation method for the solution of the hyperchaotic Rossler system
-
M. Mossa Al-Sawalha M.S.M. Noorani 2009 Application of the differential transformation method for the solution of the hyperchaotic Rossler system Commun. Nonlinear Sci. Numer. Simul. 14 509 1514
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 509-1514
-
-
Mossa Al-Sawalha, M.1
Noorani, M.S.M.2
-
18
-
-
67650421588
-
A numeric-analytic method for approximating the chaotic Chen system
-
1198.65002 10.1016/j.chaos.2009.03.096
-
M. Mossa Al-sawalha M.S.M. Noorani 2009 A numeric-analytic method for approximating the chaotic Chen system Chaos Solitons Fractals 42 1784 1791 1198.65002 10.1016/j.chaos.2009.03.096
-
(2009)
Chaos Solitons Fractals
, vol.42
, pp. 1784-1791
-
-
Mossa Al-Sawalha, M.1
Noorani, M.S.M.2
-
19
-
-
2342649493
-
Application of differential transform method to differential-algebraic equations
-
1077.65088 10.1016/S0096-3003(03)00581-2 2062765
-
F. Ayaz 2004 Application of differential transform method to differential-algebraic equations Appl. Math. Comput. 152 649 657 1077.65088 10.1016/S0096-3003(03)00581-2 2062765
-
(2004)
Appl. Math. Comput.
, vol.152
, pp. 649-657
-
-
Ayaz, F.1
-
20
-
-
33644589650
-
Solution of difference equations by using differential transform method
-
1138.65309 10.1016/j.amc.2005.06.013 2220609
-
A. Arikoglu I. Ozkol 2006 Solution of difference equations by using differential transform method Appl. Math. Comput. 174 1216 1228 1138.65309 10.1016/j.amc.2005.06.013 2220609
-
(2006)
Appl. Math. Comput.
, vol.174
, pp. 1216-1228
-
-
Arikoglu, A.1
Ozkol, I.2
-
21
-
-
33749517865
-
Solution of differential-difference equations by using differential transform method
-
1148.65310 10.1016/j.amc.2006.01.022 2270477
-
A. Arikoglu I. Ozkol 2006 Solution of differential-difference equations by using differential transform method Appl. Math. Comput. 181 153 162 1148.65310 10.1016/j.amc.2006.01.022 2270477
-
(2006)
Appl. Math. Comput.
, vol.181
, pp. 153-162
-
-
Arikoglu, A.1
Ozkol, I.2
-
22
-
-
67349150680
-
Solitary wave solutions for the KdV and mKdV equations by differential transform method
-
1198.35222 10.1016/j.chaos.2008.02.009 2533338
-
F. Kangalgil F. Ayaz 2009 Solitary wave solutions for the KdV and mKdV equations by differential transform method Chaos Solitons Fractals 41 464 472 1198.35222 10.1016/j.chaos.2008.02.009 2533338
-
(2009)
Chaos Solitons Fractals
, vol.41
, pp. 464-472
-
-
Kangalgil, F.1
Ayaz, F.2
-
23
-
-
0006035689
-
Solving partial differential equations by two dimensional differential transform
-
1028.35008 10.1016/S0096-3003(98)10115-7 1717593
-
C.K. Chen 1999 Solving partial differential equations by two dimensional differential transform Appl. Math. Comput. 106 171 179 1028.35008 10.1016/S0096-3003(98)10115-7 1717593
-
(1999)
Appl. Math. Comput.
, vol.106
, pp. 171-179
-
-
Chen, C.K.1
-
24
-
-
0035877251
-
Two-dimensional differential transform for Partial differential equations
-
1024.65093 10.1016/S0096-3003(99)00293-3 1830873
-
M.J. Jang C.L. Chen Y.C. Liy 2001 Two-dimensional differential transform for Partial differential equations Appl. Math. Comput. 121 261 270 1024.65093 10.1016/S0096-3003(99)00293-3 1830873
-
(2001)
Appl. Math. Comput.
, vol.121
, pp. 261-270
-
-
Jang, M.J.1
Chen, C.L.2
Liy, Y.C.3
-
25
-
-
27844437049
-
N-Dimensional differential transformation method for solving linear and nonlinear PDE's
-
1065.35011 10.1080/0020716042000301725 2159258
-
A. Kurnaz G. Oturanc M.E. Kiris 2005 n-Dimensional differential transformation method for solving linear and nonlinear PDE's Int. J. Comput. Math. 82 369 80 1065.35011 10.1080/0020716042000301725 2159258
-
(2005)
Int. J. Comput. Math.
, vol.82
, pp. 369-80
-
-
Kurnaz, A.1
Oturanc, G.2
Kiris, M.E.3
-
26
-
-
50949099510
-
Algorithms for nonlinear fractional partial differential equations: A selection of numerical methods
-
1172.26302 2432079
-
S. Momani Z. Odibat I. Hashim 2008 Algorithms for nonlinear fractional partial differential equations: A selection of numerical methods Topol. Method Nonlinear Anal. 31 211 226 1172.26302 2432079
-
(2008)
Topol. Method Nonlinear Anal.
, vol.31
, pp. 211-226
-
-
Momani, S.1
Odibat, Z.2
Hashim, I.3
-
27
-
-
34250215244
-
Solution of fractional differential equations by using differential transform method
-
1152.34306 10.1016/j.chaos.2006.09.004 2335397
-
A. Arikoglu I. Ozkol 2007 Solution of fractional differential equations by using differential transform method Chaos Solitons Fractals 34 1473 1481 1152.34306 10.1016/j.chaos.2006.09.004 2335397
-
(2007)
Chaos Solitons Fractals
, vol.34
, pp. 1473-1481
-
-
Arikoglu, A.1
Ozkol, I.2
-
28
-
-
34249875994
-
Approximate solutions of generalized pantograph equations by the differential transform method
-
Y. Keskin A. Kurnaz M.E. Kiris G. Oturanc 2007 Approximate solutions of generalized pantograph equations by the differential transform method Int. J. Nonlinear Sci. 8 159 164
-
(2007)
Int. J. Nonlinear Sci.
, vol.8
, pp. 159-164
-
-
Keskin, Y.1
Kurnaz, A.2
Kiris, M.E.3
Oturanc, G.4
-
29
-
-
26044470185
-
Solution of boundary value problems for integro-differential equations by using differential transform method
-
1090.65145 10.1016/j.amc.2004.10.009 2171768
-
A. Arikoglu I. Ozkol 2005 Solution of boundary value problems for integro-differential equations by using differential transform method Appl. Math. Comput. 168 1145 1158 1090.65145 10.1016/j.amc.2004.10.009 2171768
-
(2005)
Appl. Math. Comput.
, vol.168
, pp. 1145-1158
-
-
Arikoglu, A.1
Ozkol, I.2
-
30
-
-
49749140424
-
Differential transform method for solving Volterra integral equations with separable kernels
-
1187.45003 10.1016/j.mcm.2007.12.022 2458224
-
Z.M. Odibat 2008 Differential transform method for solving Volterra integral equations with separable kernels Math. Comput. Model. 48 7-8 1144 1149 1187.45003 10.1016/j.mcm.2007.12.022 2458224
-
(2008)
Math. Comput. Model.
, vol.48
, Issue.78
, pp. 1144-1149
-
-
Odibat, Z.M.1
-
31
-
-
0033371590
-
Solitons and symmetries
-
0932.35174 10.1023/A:1004581620608 1697965
-
M.J. Ablowitz P.A. Clarkson 1999 Solitons and symmetries J. Eng. Math. 36 1 9 0932.35174 10.1023/A:1004581620608 1697965
-
(1999)
J. Eng. Math.
, vol.36
, pp. 1-9
-
-
Ablowitz, M.J.1
Clarkson, P.A.2
-
32
-
-
33846887850
-
Soliton perturbation theory for the modified nonlinear Schrödinger equation
-
1111.35072 10.1016/j.cnsns.2005.11.006 2309762
-
A. Biswas K. Porsezian 2007 Soliton perturbation theory for the modified nonlinear Schrödinger equation Commun. Nonlinear Sci. Numer. Simul. 12 886 903 1111.35072 10.1016/j.cnsns.2005.11.006 2309762
-
(2007)
Commun. Nonlinear Sci. Numer. Simul.
, vol.12
, pp. 886-903
-
-
Biswas, A.1
Porsezian, K.2
-
33
-
-
26844436587
-
Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations
-
1082.65570 10.1016/j.amc.2004.10.066 2177202
-
H. Wang 2005 Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations Appl. Math. Comput. 170 17 35 1082.65570 10.1016/j.amc.2004.10.066 2177202
-
(2005)
Appl. Math. Comput.
, vol.170
, pp. 17-35
-
-
Wang, H.1
|