메뉴 건너뛰기




Volumn 88, Issue 8, 2011, Pages 1681-1696

A matrix formulation to the wave equation with non-local boundary condition

Author keywords

Matrix formulation; Non local boundary condition; Shifted Chebyshev bases; Shifted standard bases; Wave equation

Indexed keywords


EID: 79951851926     PISSN: 00207160     EISSN: 10290265     Source Type: Journal    
DOI: 10.1080/00207160.2010.521816     Document Type: Article
Times cited : (24)

References (32)
  • 1
    • 67349156357 scopus 로고    scopus 로고
    • Numerical solution of the system of nonlinear Volterra integro-differential equations with nonlinear differential part by the operational Tau method and error estimation
    • S. Abbasbandy and E. Taati, Numerical solution of the system of nonlinear Volterra integro-differential equations with nonlinear differential part by the operational Tau method and error estimation, J. Comput. Appl. Math. 231(1) (2009), pp. 106-113.
    • (2009) J. Comput. Appl. Math. , vol.231 , Issue.1 , pp. 106-113
    • Abbasbandy, S.1    Taati, E.2
  • 2
    • 33744510547 scopus 로고    scopus 로고
    • A numerical method for the wave equation subject to a non-local conservation condition
    • DOI 10.1016/j.apnum.2005.09.006, PII S0168927405001844
    • W. Ang, A numerical method for the wave equation subject to a non-local conservation condition, Appl. Numer. Math. 56(8) (2006), pp. 1054-1060. (Pubitemid 43818169)
    • (2006) Applied Numerical Mathematics , vol.56 , Issue.8 , pp. 1054-1060
    • Ang, W.-T.1
  • 3
    • 84968496723 scopus 로고
    • Second-order correct boundary conditions for the numerical solution of the mixed boundary problem for parabolic equations
    • J.G. Batten, Second-order correct boundary conditions for the numerical solution of the mixed boundary problem for parabolic equations, Math. Comput. 17 (1963), pp. 405-413.
    • (1963) Math. Comput. , vol.17 , pp. 405-413
    • Batten, J.G.1
  • 4
    • 52549098931 scopus 로고    scopus 로고
    • Existence of solutions for one-dimensional wave equations with nonlocal conditions
    • S.A. Beilin, Existence of solutions for one-dimensional wave equations with nonlocal conditions, Electron. J. Differ. Equ. 2001(76) (2001), pp. 1-8.
    • (2001) Electron J. Differ. Equ. , vol.2001 , Issue.76 , pp. 1-8
    • Beilin, S.A.1
  • 5
    • 3543059397 scopus 로고    scopus 로고
    • Strong solution for a mixed problem with nonlocal condition for certain pluriparabolic equations
    • A. Bouziani, Strong solution for a mixed problem with nonlocal condition for certain pluriparabolic equations, Hiroshima Math. J. 27(3) (1997), pp. 373-390.
    • (1997) Hiroshima Math. J. , vol.27 , Issue.3 , pp. 373-390
    • Bouziani, A.1
  • 6
    • 0001073548 scopus 로고
    • The solution of the heat equation subject to the specification of energy
    • J.R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21 (1963), pp. 155-160.
    • (1963) Quart. Appl. Math. , vol.21 , pp. 155-160
    • Cannon, J.R.1
  • 7
    • 0000355020 scopus 로고
    • Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories
    • W.A. Day, Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories, Quart. Appl. Math. 40(3) (1982), pp. 319-330.
    • (1982) Quart. Appl. Math. , vol.40 , Issue.3 , pp. 319-330
    • Day, W.A.1
  • 8
    • 0020544005 scopus 로고
    • Decreasing property of solutions of parabolic equations with applications to thermoelasticity
    • W.A. Day, A, decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories, Quart. Appl. Math. XLIV(4) (1983), pp. 468-475. (Pubitemid 13504948)
    • (1983) Quarterly of Applied Mathematics , vol.40 , Issue.4 , pp. 468-475
    • Day, W.A.1
  • 9
    • 11144275388 scopus 로고    scopus 로고
    • On the solution of an initial-boundary value problem that combines neumann and integral condition for the wave equation
    • DOI 10.1002/num.20019
    • M. Dehghan, On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer. Methods Partial Diff. Eqn. 21(1) (2005), pp. 24-40. (Pubitemid 40030408)
    • (2005) Numerical Methods for Partial Differential Equations , vol.21 , Issue.1 , pp. 24-40
    • Dehghan, M.1
  • 10
    • 67349260725 scopus 로고    scopus 로고
    • Variational iteration method for solving the wave equation subject to an integral conservation condition
    • M. Dehghan and A. Saadatmandi, Variational iteration method for solving the wave equation subject to an integral conservation condition, Chaos Solitons Fractals 41(3) (2009), pp. 1448-1453.
    • (2009) Chaos Solitons Fractals , vol.41 , Issue.3 , pp. 1448-1453
    • Dehghan, M.1    Saadatmandi, A.2
  • 11
    • 0346166420 scopus 로고    scopus 로고
    • On the constructing of solutions of the nonlocal initial boundary problems for one-dimensional medium oscillation equations
    • I.S. Gordeziaini and G.A.Avalishvili, On the constructing of solutions of the nonlocal initial boundary problems for one-dimensional medium oscillation equations, Mat. Model. 12(1) (2000), pp. 94-103.
    • (2000) Mat. Model. , vol.12 , Issue.1 , pp. 94-103
    • Gordeziaini, I.S.1    Avalishvili, G.A.2
  • 12
    • 0002627298 scopus 로고
    • Theory and applications of spectral methods
    • R. Voigt, D. Gottlieb, and M. Hussaini, eds. SIAM, Philadelphia, PA
    • D. Gottlieb, M. Hussaini, and S. Orszag, Theory and applications of spectral methods, in Spectral Methods for Partial Differential Equations, R. Voigt, D. Gottlieb, and M. Hussaini, eds., SIAM, Philadelphia, PA, 1984, pp. 1-54.
    • (1984) Spectral Methods for Partial Differential Equations , pp. 1-54
    • Gottlieb, D.1    Hussaini, M.2    Orszag, S.3
  • 13
    • 0036571509 scopus 로고    scopus 로고
    • A matrix formulation of the Tau Method for Fredholm and Volterra linear integro-differential equations
    • M. Hosseini and S. Shahmorad, A matrix formulation of the Tau method for Fredholm andVolterra integro-differential equations, Korean J. Comput. Appl. Math. 9(2) (2002), pp. 497-507. (Pubitemid 34494468)
    • (2002) Korean Journal of Computational and Applied Mathematics , vol.9 , Issue.2 , pp. 497-507
    • AliAbadi, M.H.1    Shahmorad, S.2
  • 14
    • 0037293897 scopus 로고    scopus 로고
    • Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases
    • DOI 10.1016/S0307-904X(02)00099-9, PII S0307904X02000999
    • S.M. Hosseini and S. Shahmorad, Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases, Appl. Math. Model. 27(2) (2003), pp. 145-154. (Pubitemid 36059507)
    • (2003) Applied Mathematical Modelling , vol.27 , Issue.2 , pp. 145-154
    • Hosseini, S.M.1    Shahmorad, S.2
  • 15
    • 26844460725 scopus 로고    scopus 로고
    • Numerical solution of Volterra integro-differential equations by the Tau method with the Chebyshev and Legendre bases
    • DOI 10.1016/j.amc.2004.11.039, PII S0096300304009282
    • S.M. Hosseini and S. Shahmorad, Numerical solution of Volterra integro-differential equations by the Tau method with the Chebyshev and Legendre bases, Appl. Math. Comput. 170(1) (2005), pp. 314-338. (Pubitemid 41454816)
    • (2005) Applied Mathematics and Computation , vol.170 , Issue.1 , pp. 314-338
    • Pour-Mahmoud, J.1    Rahimi-Ardabili, M.Y.2    Shahmorad, S.3
  • 16
    • 0000610591 scopus 로고
    • Solutions of boundary value problem in heat conductions theory with nonlocal boundary conditions
    • N.I. Ionkin, Solutions of boundary value problem in heat conductions theory with nonlocal boundary conditions, Differ. Uravn. 13(N2) (1977), pp. 294-304.
    • (1977) Differ. Uravn. , vol.13 , Issue.N2 , pp. 294-304
    • Ionkin, N.I.1
  • 17
    • 1842488555 scopus 로고
    • A boundary value problem in the theory of the heat conduction with nonclassical boundary condition
    • L.I. Kamynin, A boundary value problem in the theory of the heat conduction with nonclassical boundary condition, Z. Vychisl. Mat. Fiz. 4(N6) (1964), pp. 1006-1024.
    • (1964) Z. Vychisl. Mat. Fiz. , vol.4 , Issue.N6 , pp. 1006-1024
    • Kamynin, L.I.1
  • 18
    • 0003167590 scopus 로고
    • Eigenvalue problems for singularly perturbed differential equations
    • J.J.H. Miller ed. Boole Press, Dublen
    • K.M. Liu and E.L. Ortiz, Eigenvalue problems for singularly perturbed differential equations, in Proceedings of the BAIL II Conference, J.J.H. Miller ed., Boole Press, Dublen, 1982, pp. 324-329.
    • (1982) Proceedings of the BAIL II Conference , pp. 324-329
    • Liu, K.M.1    Ortiz, E.L.2
  • 19
    • 0003006282 scopus 로고
    • Approximation of eigenvalues defined by ordinary differential equations with the Tau method
    • B. Kagestrm and A. Ruhe, eds. Springer-Verlag, Berlin
    • K.M. Liu and E.L. Ortiz, Approximation of eigenvalues defined by ordinary differential equations with the Tau method, in Matrix Pencils, B. Kagestrm and A. Ruhe, eds., Springer-Verlag, Berlin, 1983, pp. 90-102.
    • (1983) Matrix Pencils , pp. 90-102
    • Liu, K.M.1    Ortiz, E.L.2
  • 20
    • 0022784186 scopus 로고
    • Numerical solution of eigenvalue problems for partial differential equations with the tau-lines method
    • K.M. Liu and E.L. Ortiz, Numerical solution of eigenvalue problems for partial differential equations with the Tau-lines Method, Comput. Math. Appl. 12B (5/6) (1986), pp. 1153-1168. (Pubitemid 17574127)
    • (1986) Computers & mathematics with applications , vol.B12 , Issue.5-6 , pp. 1153-1168
    • Liu, K.M.1    Ortiz, E.L.2
  • 22
    • 9544252929 scopus 로고    scopus 로고
    • On a class of singular hyperbolic equation with a weighted integral condition
    • S. Mesloub and A. Bouziani, On a class of singular hyperbolic equation with a weighted integral condition, Int. J. Math. Math. Sci. 22(3) (1999), pp. 511-520.
    • (1999) Int. J. Math. Math. Sci. , vol.22 , Issue.3 , pp. 511-520
    • Mesloub, S.1    Bouziani, A.2
  • 23
    • 3342984355 scopus 로고
    • Non-local boundary value problems for hyperbolic equation
    • L.A. Muravei and A.V. Philinovskii, Non-local boundary value problems for hyperbolic equation, Mat. Zametki 54 (1993), pp. 98-116.
    • (1993) Mat. Zametki , vol.54 , pp. 98-116
    • Muravei, L.A.1    Philinovskii, A.V.2
  • 24
  • 25
    • 0019659830 scopus 로고
    • Operational approach to the TAU method for the numerical solution of non-linear differential equations
    • E.L. Ortiz and H. Samara, An operational approach to the Tau method for the numerical solution of nonlinear differential equations, Computing 27 (1981), pp. 15-25. (Pubitemid 12519953)
    • (1981) Computing (Vienna/New York) , vol.27 , Issue.1 , pp. 15-25
    • Ortiz, E.L.1    Samara, H.2
  • 26
    • 4244163123 scopus 로고
    • Numerical solution of nonlinear partial differential equations with Tau method
    • E.L. Ortiz and K.S. Pun, Numerical solution of nonlinear partial differential equations with Tau method, J. Comput. Appl. Math. 12/13 (1985), pp. 511-516.
    • (1985) J. Comput. Appl. Math. , vol.12-13 , pp. 511-516
    • Ortiz, E.L.1    Pun, K.S.2
  • 27
    • 3042516283 scopus 로고    scopus 로고
    • A non-local problem with integral conditions for hyperbolic equations
    • L.S. Pulkina, A nonlocal problem with integral conditions for hyperbolic equations, Electron. J. Differ. Eqn. 1999(45) (1999), pp. 1-6. (Pubitemid 38994904)
    • (1999) Electronic Journal of Differential Equations , vol.1999 , pp. 1-6
    • Pulkina, L.S.1
  • 28
    • 27544516033 scopus 로고    scopus 로고
    • On solvability in L2 of nonlocal problem with integral conditions for a hyperbolic equation
    • L.S. Pulkina, On solvability in L2 of nonlocal problem with integral conditions for a hyperbolic equation, Differ. Uravn. 36(2) (2000), pp. 279-280.
    • (2000) Differ. Uravn. , vol.36 , Issue.2 , pp. 279-280
    • Pulkina, L.S.1
  • 29
    • 38049177648 scopus 로고    scopus 로고
    • Combined finite difference and spectral methods for the numerical solution of hyperbolic equation with an integral condition
    • M. Ramezani, M. Dehghan, and M. Razzaghi, Combined finite difference and spectral methods for the numerical solution of hyperbolic equation with an integral condition, Numer. Methods Partial Differ. Equ. 24(1) (2008), pp. 1-8.
    • (2008) Numer. Methods Partial Differ. Equ. , vol.24 , Issue.1 , pp. 1-8
    • Ramezani, M.1    Dehghan, M.2    Razzaghi, M.3
  • 30
    • 33847786088 scopus 로고    scopus 로고
    • Numerical solution of the one-dimensional wave equation with an integral condition
    • DOI 10.1002/num.20177
    • A. Saadatmandi and M. Dehghan, Numerical solution of the one-dimensional wave equation with an integral condition, Numer, Methods Partial Differ. Equ. 23(2) (2007), pp. 282-92. (Pubitemid 46388374)
    • (2007) Numerical Methods for Partial Differential Equations , vol.23 , Issue.2 , pp. 282-292
    • Saadatmandi, A.1    Dehghan, M.2
  • 31
    • 52249100369 scopus 로고    scopus 로고
    • The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition
    • F. Shakeri and M. Dehghan, The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition, J. Comput. Math. Appl. 56(9) (2008), pp. 2175-2188.
    • (2008) J. Comput. Math. Appl. , vol.56 , Issue.9 , pp. 2175-2188
    • Shakeri, F.1    Dehghan, M.2
  • 32
    • 72849130579 scopus 로고    scopus 로고
    • A computational method for solving two-dimensional linear Fredholm integral equations of the second kind
    • A. Tari and S. Shahmorad, A computational method for solving two-dimensional linear Fredholm integral equations of the second kind, ANZIAM J. 49 (2008), pp. 543-549.
    • (2008) ANZIAM J. , vol.49 , pp. 543-549
    • Tari, A.1    Shahmorad, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.