-
1
-
-
0036696341
-
On a generalized Lorenz canonical form of chaotic systems
-
Celikovsky, S. & Chen, G. [2002a] "On a generalized Lorenz canonical form of chaotic systems," Int. J. Bifurcation and Chaos 12, 1789-1812.
-
(2002)
Int. J. Bifurcation and Chaos
, vol.12
, pp. 1789-1812
-
-
Celikovsky, S.1
Chen, G.2
-
2
-
-
14544275749
-
Hyperbolic-type generalized Lorenz system and its canonical form
-
Barcelona, Spain, July 2002
-
Celikovsky, S. & Chen, G. [2002b] "Hyperbolic-type generalized Lorenz system and its canonical form," Proc. 15th Triennial World Congress of IFAC, Barcelona, Spain, July 2002.
-
(2002)
Proc. 15th Triennial World Congress of IFAC
-
-
Celikovsky, S.1
Chen, G.2
-
3
-
-
20444502538
-
On the generalized Lorenz canonical form
-
DOI 10.1016/j.chaos.2005.02.040, PII S0960077905001931
-
Celikovsky, S. & Chen, G. [2005] "On the generalized Lorenz canonical form," Chaos Solit. Fract. 26, 1271-1276. (Pubitemid 40821855)
-
(2005)
Chaos, Solitons and Fractals
, vol.26
, Issue.5
, pp. 1271-1276
-
-
Celikovsky, S.1
Chen, G.2
-
5
-
-
77951529537
-
On the nonequivalence of Lorenz system and Chen system
-
Hou, Z., Kang, N., Kong, X., Chen, G. & Yan, G. [2010] "On the nonequivalence of Lorenz system and Chen system," Int. J. Bifurcation and Chaos 20, 557-560.
-
(2010)
Int. J. Bifurcation and Chaos
, vol.20
, pp. 557-560
-
-
Hou, Z.1
Kang, N.2
Kong, X.3
Chen, G.4
Yan, G.5
-
6
-
-
4243055985
-
Estimating the bounds for the Lorenz family of chaotic systems
-
Li, D., Lu, J., Wu, X. & Chen, G. [2005] "Estimating the bounds for the Lorenz family of chaotic systems," Chaos Solit. Fract. 23, 529-534.
-
(2005)
Chaos Solit. Fract.
, vol.23
, pp. 529-534
-
-
Li, D.1
Lu, J.2
Wu, X.3
Chen, G.4
-
7
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz, E. N. [1963] "Deterministic nonperiodic flow," J. Atmos. Sci. 20, 130-141.
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
9
-
-
0036999538
-
Bridge the gap between the Lorenz system and the Chen system
-
DOI 10.1142/S021812740200631X
-
Lu, J., Chen, G., Cheng, D. & Celikovsky, S. [2002] "Bridge the gap between the Lorenz system and the Chen system," Int. J. Bifurcation and Chaos 12, 2917-2926. (Pubitemid 36261594)
-
(2002)
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
, vol.12
, Issue.12
, pp. 2917-2926
-
-
Lu, J.1
Chen, G.2
Cheng, D.3
Celikovsky, S.4
-
10
-
-
33846299223
-
On the bounded ness of solutions of the Chen system
-
Qin, W. & Chen, G. [2007] "On the bounded ness of solutions of the Chen system," J. Math. Anal. Appl. 329, 445-451.
-
(2007)
J. Math. Anal. Appl.
, vol.329
, pp. 445-451
-
-
Qin, W.1
Chen, G.2
-
12
-
-
0034238522
-
Bifurcation analysis of Chen's equation
-
Ueta, T. & Chen, G. [2000] "Bifurcation analysis of Chen's equation," Int. J. Bifurcation and Chaos 10, 1917-1931.
-
(2000)
Int. J. Bifurcation and Chaos
, vol.10
, pp. 1917-1931
-
-
Ueta, T.1
Chen, G.2
-
13
-
-
33845517878
-
A unified Lorenz-type system and its canonical form
-
Yang, Q., Chen, Q., Chen, G. & Zhou, T. [2006] "A unified Lorenz-type system and its canonical form," Int. J. Bifurcation and Chaos 16, 2855-2872.
-
(2006)
Int. J. Bifurcation and Chaos
, vol.16
, pp. 2855-2872
-
-
Yang, Q.1
Chen, Q.2
Chen, G.3
Zhou, T.4
-
14
-
-
39449106074
-
Chaotic attractors of the conjugate Lorenz-type system
-
DOI 10.1142/S0218127407019792, PII S0218127407019792
-
Yang, Q., Chen, G. & Huang, K. [2007] "Chaotic attractors of the conjugate Lorenz-type system," Int. J. Bifurcation and Chaos 17, 3929-3949. (Pubitemid 351269037)
-
(2007)
International Journal of Bifurcation and Chaos
, vol.17
, Issue.11
, pp. 3929-3949
-
-
Yang, Q.1
Chen, G.2
Huang, K.3
-
15
-
-
47749084301
-
A chaotic system with one saddle and two stable node-foci
-
DOI 10.1142/S0218127408021063, PII S0218127408021063
-
Yang, Q. & Chen, G. [2008] "A chaotic system with one saddle and two stable node-foci," Int. J. Bifurcation and Chaos 18, 1393-1414. (Pubitemid 352025678)
-
(2008)
International Journal of Bifurcation and Chaos
, vol.18
, Issue.5
, pp. 1393-1414
-
-
Yang, Q.1
Chen, G.2
-
16
-
-
70149112637
-
A modified generalized Lorenz-type system and its canonical form
-
Yang, Q., Zhang, K. & Chen, G. [2009] "A modified generalized Lorenz-type system and its canonical form," Int. J. Bifurcation and Chaos 19, 1931-1949.
-
(2009)
Int. J. Bifurcation and Chaos
, vol.19
, pp. 1931-1949
-
-
Yang, Q.1
Zhang, K.2
Chen, G.3
-
17
-
-
0242425114
-
Complex dynamical behaviors of the chaotic Chen's system
-
DOI 10.1142/S0218127403008089
-
Zhou, T., Chen, G. & Tang, Y. [2003] "Complex dynamical behaviors of the chaotic Chen's system," Int. J. Bifurcation and Chaos 13, 2561-2574. (Pubitemid 37396706)
-
(2003)
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
, vol.13
, Issue.9
, pp. 2561-2574
-
-
Zhou, T.1
Tang, Y.2
Chen, G.3
-
18
-
-
10444267277
-
Chen's attractor exists
-
Zhou, T., Chen, G. & Tang, Y. [2004] "Chen's attractor exists," Int. J. Bifurcation and Chaos 14, 3167-3178.
-
(2004)
Int. J. Bifurcation and Chaos
, vol.14
, pp. 3167-3178
-
-
Zhou, T.1
Chen, G.2
Tang, Y.3
-
19
-
-
29544432073
-
Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system
-
DOI 10.1061/(ASCE)0733-950X(2006)132:2(106), PII S0022247X05009820
-
Note: A small technical correction has been made by Zheng, Z. & Chen, G. [2006] "Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system," J. Math. Anal. Appl. 315, 106-119. (Pubitemid 43013133)
-
(2006)
Journal of Mathematical Analysis and Applications
, vol.315
, Issue.1
, pp. 106-119
-
-
Zheng, Z.1
Chen, G.2
-
20
-
-
15544370574
-
Si'lnikov chaos in the generalized lorenz canonical form of dynamical systems
-
DOI 10.1007/s11071-005-4195-8
-
Zhou, T., Chen, G. & Celikovsky, S. [2005] "Silnikov chaos in the generalized Lorenz canonical form of dynamics systems," Nonlin. Dyn. 39, 319-334. (Pubitemid 40400720)
-
(2005)
Nonlinear Dynamics
, vol.39
, Issue.4
, pp. 319-334
-
-
Zhou, T.1
Chen, G.2
Celikovsky, S.3
|