-
2
-
-
0000863462
-
Bilinear systems and chaos
-
Čelikovský, S. & Vančěk, A. [1994] "Bilinear systems and chaos," Kybernetika 30, 403-424.
-
(1994)
Kybernetika
, vol.30
, pp. 403-424
-
-
Čelikovský, S.1
Vančěk, A.2
-
3
-
-
0036696341
-
-
Čelikovský, S. & Chen, G. [2002a] On a generalized Lorenz canonical form of chaotic systems, Int. J. Bifurcation and Chaos 12, 1789-1812.
-
Čelikovský, S. &" Chen, G. [2002a] "On a generalized Lorenz canonical form of chaotic systems," Int. J. Bifurcation and Chaos 12, 1789-1812.
-
-
-
-
4
-
-
14544275749
-
Hyperbolic-type generalized Lorenz system and its canonical form
-
Barcelona, Spain, July, in CD ROM
-
Čelikovský, S. & Chen, G. [2002b] "Hyperbolic-type generalized Lorenz system and its canonical form," Proc. 15th Triennial World Congress of IFAG, Barcelona, Spain, July 2002, in CD ROM.
-
(2002)
Proc. 15th Triennial World Congress of IFAG
-
-
Čelikovský, S.1
Chen, G.2
-
5
-
-
20444502538
-
On the generalized Lorenz canonical form
-
Čelikovský S. & Chen, G. [2005] "On the generalized Lorenz canonical form," Chaos Solit. Fract. 26, 1271-1276.
-
(2005)
Chaos Solit. Fract
, vol.26
, pp. 1271-1276
-
-
Čelikovský, S.1
Chen, G.2
-
7
-
-
0942288517
-
The chaotic region of Lorenz-type system in the parameter space
-
Liao, H. H., Zhou, T. S. & Tang, Y. [2004] "The chaotic region of Lorenz-type system in the parameter space," Chaos Solit. Fract. 21, 185-192.
-
(2004)
Chaos Solit. Fract
, vol.21
, pp. 185-192
-
-
Liao, H.H.1
Zhou, T.S.2
Tang, Y.3
-
9
-
-
0036999538
-
Bridge the gap between the Lorenz system and the Chen system
-
Lu, J., Chen, G., Cheng, D. & Čelikovský, S. [2002] "Bridge the gap between the Lorenz system and the Chen system," Int. J. Bifurcation and Chaos 12, 2917-2926.
-
(2002)
Int. J. Bifurcation and Chaos
, vol.12
, pp. 2917-2926
-
-
Lu, J.1
Chen, G.2
Cheng, D.3
Čelikovský, S.4
-
11
-
-
0038434713
-
A multiplicative ergodic theorem, characteristic Lyapunov exponents of dynamical systems
-
Oselede, V. I. [1968] "A multiplicative ergodic theorem, characteristic Lyapunov exponents of dynamical systems," Trudy Moskov. Mat. Obshch. 19, 179-210.
-
(1968)
Trudy Moskov. Mat. Obshch
, vol.19
, pp. 179-210
-
-
Oselede, V.I.1
-
14
-
-
0034738985
-
The Lorenz attractor exists
-
Stewart, I. [2002] "The Lorenz attractor exists," Nature 406, 948-949.
-
(2002)
Nature
, vol.406
, pp. 948-949
-
-
Stewart, I.1
-
15
-
-
0033563546
-
The Lorenz attractor exists
-
Tucker, W. [1999] "The Lorenz attractor exists," C. R. Acad. Paris Ser. I: Math. 328, 1197-1202.
-
(1999)
C. R. Acad. Paris Ser. I: Math
, vol.328
, pp. 1197-1202
-
-
Tucker, W.1
-
16
-
-
0034238522
-
Bifurcation analysis of Chen's equation
-
Ueta, T. & Chen, G. [2000] "Bifurcation analysis of Chen's equation," Int. J. Bifurcation and Chaos 10, 1917-1931.
-
(2000)
Int. J. Bifurcation and Chaos
, vol.10
, pp. 1917-1931
-
-
Ueta, T.1
Chen, G.2
-
17
-
-
47749125549
-
-
Vanečěk, A. Čelikovský Č elikovský, S. [1996] Control Systems: From Linear Analysis to Synthesis of Chaos (Prentice-Hall, London).
-
Vanečěk, A. Čelikovský Č elikovský, S. [1996] Control Systems: From Linear Analysis to Synthesis of Chaos (Prentice-Hall, London).
-
-
-
-
18
-
-
0017424051
-
The structure of Lorenz attractors
-
eds. Bermard, P. & Ratiu, T, Springer-Verlag, Berlin, pp
-
Williams, R. [1997] "The structure of Lorenz attractors," in Turbulence Seminar Berkeley 1996/97, eds. Bermard, P. & Ratiu, T. (Springer-Verlag, Berlin), pp. 94-112.
-
(1997)
Turbulence Seminar Berkeley 1996/97
, pp. 94-112
-
-
Williams, R.1
-
19
-
-
33845517878
-
A unified Lorenz-type system and its canonical form
-
Yang, Q. G., Chen, G. & Zhou, T. S. [2006] "A unified Lorenz-type system and its canonical form," Int. J. Bifurcation and Chaos 16, 2855-2871.
-
(2006)
Int. J. Bifurcation and Chaos
, vol.16
, pp. 2855-2871
-
-
Yang, Q.G.1
Chen, G.2
Zhou, T.S.3
-
20
-
-
39449106074
-
Chaotic attractors of the conjugate Lorenz-type system
-
Yang, Q. G., Chen, G. & Huang, K. F. [2007] "Chaotic attractors of the conjugate Lorenz-type system," Int. J. Bifurcation and Chaos 17, 3929-3949.
-
(2007)
Int. J. Bifurcation and Chaos
, vol.17
, pp. 3929-3949
-
-
Yang, Q.G.1
Chen, G.2
Huang, K.F.3
-
21
-
-
0242425114
-
Complex dynamical behaviors of the chaotic Chen's system
-
Zhou, T. S., Chen, G. & Tang, Y. [2003] "Complex dynamical behaviors of the chaotic Chen's system," Int. J. Bifurcation and Chaos 13, 2561-2574.
-
(2003)
Int. J. Bifurcation and Chaos
, vol.13
, pp. 2561-2574
-
-
Zhou, T.S.1
Chen, G.2
Tang, Y.3
-
22
-
-
10444267277
-
Chen's attractor exists
-
Zhou, T. S., Chen, G. & Tang, Y. [2004a] "Chen's attractor exists," Int. J. Bifurcation and Chaos 14, 3167-3178.
-
(2004)
Int. J. Bifurcation and Chaos
, vol.14
, pp. 3167-3178
-
-
Zhou, T.S.1
Chen, G.2
Tang, Y.3
-
23
-
-
0347355136
-
A universal unfolding of the Lorenz system
-
Zhou, T. S., Chen, G. & Tang, Y. [2004b] "A universal unfolding of the Lorenz system," Chaos Solit. Fract. 20, 979-993.
-
(2004)
Chaos Solit. Fract
, vol.20
, pp. 979-993
-
-
Zhou, T.S.1
Chen, G.2
Tang, Y.3
-
24
-
-
0041621573
-
The complicated trajectory behaviors in the Lorenz system
-
Zhou, T. S., Liao, H. H., Zheng, Z. H. & Tang, Y. [2004c] "The complicated trajectory behaviors in the Lorenz system," Chaos Solit. Fract. 19, 863-873.
-
(2004)
Chaos Solit. Fract
, vol.19
, pp. 863-873
-
-
Zhou, T.S.1
Liao, H.H.2
Zheng, Z.H.3
Tang, Y.4
-
25
-
-
15544370574
-
Si'lnikov chaos in the generalized Lorenz canonical form of dynamics systems
-
Zhou, T. S., Chen, G. & Čelikovský, S. [2005] "Si'lnikov chaos in the generalized Lorenz canonical form of dynamics systems," Nonlin. Dyn. 39, 319-334.
-
(2005)
Nonlin. Dyn
, vol.39
, pp. 319-334
-
-
Zhou, T.S.1
Chen, G.2
Čelikovský, S.3
-
26
-
-
37849184991
-
Classification of chaos in 3-D autonomous quadratic systems - I. Basic framework and methods
-
Zhou, T. S. & Chen, G. [2006] "Classification of chaos in 3-D autonomous quadratic systems - I. Basic framework and methods," Int. J. Bifurcation and Chaos 16, 2459-2479.
-
(2006)
Int. J. Bifurcation and Chaos
, vol.16
, pp. 2459-2479
-
-
Zhou, T.S.1
Chen, G.2
|