-
1
-
-
0040689421
-
Lie algebras, structure of nonlinear systems and chaotic motion
-
Banks, S. P. & McCaffrey, D. [1998] "Lie algebras, structure of nonlinear systems and chaotic motion," Int. J. Bifurcation and Chaos 8, 1-26.
-
(1998)
Int. J. Bifurcation and Chaos
, vol.8
, pp. 1-26
-
-
Banks, S.P.1
McCaffrey, D.2
-
2
-
-
0033177290
-
Analysis and structure of a new chaotic system
-
Banks, S. P. [1999] "Analysis and structure of a new chaotic system," Int. J. Bifurcation and Chaos 9, 1571-1583.
-
(1999)
Int. J. Bifurcation and Chaos
, vol.9
, pp. 1571-1583
-
-
Banks, S.P.1
-
4
-
-
0000863462
-
Bilinear systems and chaos
-
Čelikovský, S. & Vanečěek, A. [1994] "Bilinear systems and chaos," Kybernetika 30, 403-424.
-
(1994)
Kybernetika
, vol.30
, pp. 403-424
-
-
Čelikovský, S.1
Vanečěek, A.2
-
6
-
-
0036696341
-
On a generalized Lorenz canonical form of chaotic systems
-
Čelikovský, S. & Chen, G. [2002a] "On a generalized Lorenz canonical form of chaotic systems," Int. J. Bifurcation and Chaos 12, 1789-1812.
-
(2002)
Int. J. Bifurcation and Chaos
, vol.12
, pp. 1789-1812
-
-
Čelikovský, S.1
Chen, G.2
-
7
-
-
14544275749
-
Hyperbolic-type generalized Lorenz system and its canonical form
-
Barcelona, Spain, July, in CD ROM
-
Čelikovský, S. & Chen, G. [2002b] "Hyperbolic-type generalized Lorenz system and its canonical form," Proc. 15th Triennial World Congress of IFAC, Barcelona, Spain, July 2002, in CD ROM.
-
(2002)
Proc. 15th Triennial World Congress of IFAC
-
-
Čelikovský, S.1
Chen, G.2
-
8
-
-
20444502538
-
On the generalized Lorenz canonical form
-
Čelikovský, S. & Chen, G. [2005] "On the generalized Lorenz canonical form," Chaos Solit Fract. 26, 1271-1276.
-
(2005)
Chaos Solit Fract
, vol.26
, pp. 1271-1276
-
-
Čelikovský, S.1
Chen, G.2
-
9
-
-
0003467884
-
-
World Scientific, Singapore
-
Chen, G. & Dong, X. [1998] From Chaos to Order: Methodologies, Perspectives, and Applications (World Scientific, Singapore).
-
(1998)
From Chaos to Order: Methodologies, Perspectives, and Applications
-
-
Chen, G.1
Dong, X.2
-
12
-
-
0003743336
-
-
World Scientific, Singapore
-
Hao, B. L. [1984] Chaos (World Scientific, Singapore).
-
(1984)
Chaos
-
-
Hao, B.L.1
-
13
-
-
0034262484
-
Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis
-
Lian, K. & Liu, P. [2000] "Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis," IEEE Trans. Circ. Syst.-I 47, 1418-1424.
-
(2000)
IEEE Trans. Circ. Syst.-I
, vol.47
, pp. 1418-1424
-
-
Lian, K.1
Liu, P.2
-
14
-
-
0942288517
-
The chaotic region of Lorenz-type system in the parameter space
-
Liao, H., Zhou, T. & Tang, Y. [2004] "The chaotic region of Lorenz-type system in the parameter space," Chaos Solit Fract. 21, 185-192.
-
(2004)
Chaos Solit Fract
, vol.21
, pp. 185-192
-
-
Liao, H.1
Zhou, T.2
Tang, Y.3
-
15
-
-
13444282811
-
Dynamical analysis of a chaotic system with two double-scroll chaotic attractors
-
Liu, W. & Chen, G. [2004] "Dynamical analysis of a chaotic system with two double-scroll chaotic attractors," Int. J. Bifurcation and Chaos 14, 971-998.
-
(2004)
Int. J. Bifurcation and Chaos
, vol.14
, pp. 971-998
-
-
Liu, W.1
Chen, G.2
-
16
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz, E. N. [1963] "Deterministic nonperiodic flow," J. Atmos. Sci. 20, 130-141.
-
(1963)
J. Atmos. Sci
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
18
-
-
0036999538
-
Bridge the gap between the Lorenz system and the Chen system
-
Lü, J., Chen, G., Cheng, D. & Čelikovský, S. [2002a] "Bridge the gap between the Lorenz system and the Chen system," Int. J. Bifurcation and Chaos 12, 2917-2926.
-
(2002)
Int. J. Bifurcation and Chaos
, vol.12
, pp. 2917-2926
-
-
Lü, J.1
Chen, G.2
Cheng, D.3
Čelikovský, S.4
-
19
-
-
0036592279
-
Generating chaos with a switching piecewise-linear controller
-
Lü, J., Zhou, T., Chen, G. & Yang, X. [2002b] "Generating chaos with a switching piecewise-linear controller," Chaos 12, 344-349.
-
(2002)
Chaos
, vol.12
, pp. 344-349
-
-
Lü, J.1
Zhou, T.2
Chen, G.3
Yang, X.4
-
20
-
-
13844267806
-
On the generalized Lorenz canonical form
-
Lü, J. & Chen, G. [2004] "On the generalized Lorenz canonical form," Int. J. Bifurcation and Chaos 14, 1507-1537.
-
(2004)
Int. J. Bifurcation and Chaos
, vol.14
, pp. 1507-1537
-
-
Lü, J.1
Chen, G.2
-
21
-
-
0002403778
-
Chaos in the Lorenz equations: A computer-assisted proof
-
Mischaikow, K. & Mrozek, M. [1995] "Chaos in the Lorenz equations: A computer-assisted proof," Bull. AMS (New Series) 32, 66-72.
-
(1995)
Bull. AMS (New Series)
, vol.32
, pp. 66-72
-
-
Mischaikow, K.1
Mrozek, M.2
-
22
-
-
4243489552
-
Controlling chaos
-
Ott, E., Grebogi, C. & Yorke, J. A. [1990] "Controlling chaos," Phys. Rev. Lett. 64, 1196-1199.
-
(1990)
Phys. Rev. Lett
, vol.64
, pp. 1196-1199
-
-
Ott, E.1
Grebogi, C.2
Yorke, J.A.3
-
23
-
-
18144402417
-
Analysis of a new chaotic system
-
Qi, G., Chen, G. & Du, S. Z. [2005] "Analysis of a new chaotic system," Physica A 352, 295-308.
-
(2005)
Physica A
, vol.352
, pp. 295-308
-
-
Qi, G.1
Chen, G.2
Du, S.Z.3
-
24
-
-
21344497876
-
Normal forms and Lorenz attractors
-
Shilnikov, A. L., Shilnikov, L. P. Sz Turaev, D. V. [1993] "Normal forms and Lorenz attractors," Int. J. Bifurcation and Chaos 3, 1123-1139.
-
(1993)
Int. J. Bifurcation and Chaos
, vol.3
, pp. 1123-1139
-
-
Shilnikov, A.L.1
Shilnikov, L.P.S.2
Turaev, D.V.3
-
25
-
-
0002048562
-
On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model
-
Shimizu, T. & Morioka, N. [1976] "On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model," Phys. Lett. A 76, 201-204.
-
(1976)
Phys. Lett. A
, vol.76
, pp. 201-204
-
-
Shimizu, T.1
Morioka, N.2
-
27
-
-
0007678353
-
Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis, 'labyrinth chaos', Int
-
Thomas, R. [1999] "Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis, 'labyrinth chaos'," Int. J. Bifurcation and Chaos 9, 1889-1905.
-
(1999)
J. Bifurcation and Chaos
, vol.9
, pp. 1889-1905
-
-
Thomas, R.1
-
28
-
-
0033563546
-
The Lorenz attractor exists
-
Tucker, W. [1999] "The Lorenz attractor exists," C R Acad Paris Ser I: Math. 328, 1197-1202.
-
(1999)
C R Acad Paris Ser I: Math
, vol.328
, pp. 1197-1202
-
-
Tucker, W.1
-
29
-
-
0034238522
-
Bifurcation analysis of Chen's equation
-
Ueta, T. & Chen, G. [2000] "Bifurcation analysis of Chen's equation," Int. J. Bifurcation and Chaos 10, 1917-1931.
-
(2000)
Int. J. Bifurcation and Chaos
, vol.10
, pp. 1917-1931
-
-
Ueta, T.1
Chen, G.2
-
30
-
-
33845517878
-
A unified Lorenz-type system and its canonical form
-
Yang, Q. G., Chen, G. & Zhou, T. S. [2006] "A unified Lorenz-type system and its canonical form," Int. J. Bifurcation and Chaos 16, 2855-2871.
-
(2006)
Int. J. Bifurcation and Chaos
, vol.16
, pp. 2855-2871
-
-
Yang, Q.G.1
Chen, G.2
Zhou, T.S.3
-
31
-
-
0242425114
-
Complex dynamical behaviors of the chaotic Chen's system
-
Zhou, T. S., Chen, G. & Tang, Y. [2003a] "Complex dynamical behaviors of the chaotic Chen's system," Int. J. Bifurcation and Chaos 13, 2561-2574.
-
(2003)
Int. J. Bifurcation and Chaos
, vol.13
, pp. 2561-2574
-
-
Zhou, T.S.1
Chen, G.2
Tang, Y.3
-
32
-
-
0042623485
-
Constructing a new chaotic system based on the Silnikov criterion
-
Zhou, T. S., Chen, G. & Yang, Q. G. [2003b] "Constructing a new chaotic system based on the Silnikov criterion," Chaos Solit. Fract. 19, 985-993.
-
(2003)
Chaos Solit. Fract
, vol.19
, pp. 985-993
-
-
Zhou, T.S.1
Chen, G.2
Yang, Q.G.3
-
33
-
-
0942266242
-
A simple smooth chaotic system with a 3-layer attractor
-
Zhou, T. S. & Chen, G. [2004] "A simple smooth chaotic system with a 3-layer attractor," Int. J. Bifurcation and Chaos 14, 1795-1799.
-
(2004)
Int. J. Bifurcation and Chaos
, vol.14
, pp. 1795-1799
-
-
Zhou, T.S.1
Chen, G.2
-
34
-
-
10444267277
-
-
Zhou, T. S., Chen, G. & Tang, Y. [2004] Chen's attractor exists, Int. J. Bifurcation and Chaos 14, 31673178.
-
Zhou, T. S., Chen, G. & Tang, Y. [2004] "Chen's attractor exists," Int. J. Bifurcation and Chaos 14, 31673178.
-
-
-
-
35
-
-
15544370574
-
Si'lnikov chaos in the generalized Lorenz canonical form of dynamics systems
-
Zhou, T. S., Chen, G. & Čelikovsḱ, S. [2005] "Si'lnikov chaos in the generalized Lorenz canonical form of dynamics systems," Nonlin. Dyn. 39, 319-334.
-
(2005)
Nonlin. Dyn
, vol.39
, pp. 319-334
-
-
Zhou, T.S.1
Chen, G.2
Čelikovsḱ, S.3
|