-
1
-
-
0031644084
-
2 is NP-hard for randomized reductions
-
2 is NP-hard for randomized reductions, Proc. 30th STOC (1998) 10-19.
-
(1998)
Proc. 30th STOC
, pp. 10-19
-
-
Ajtai, M.1
-
2
-
-
0038784608
-
The Worst-case behavior of Schnorr's algorithm approximating the shortest nonzero vector in lattice
-
M. Ajtai, The Worst-case behavior of Schnorr's algorithm approximating the shortest nonzero vector in lattice, Proc. 35th STOC (2003) 396-406.
-
(2003)
Proc. 35th STOC
, pp. 396-406
-
-
Ajtai, M.1
-
4
-
-
0037190374
-
Random lattices threshold phenomena and efficient reduction algorithms
-
A. Akhavi, Random lattices threshold phenomena and efficient reduction algorithms, Theoret. Comput. Sci. 287(2002) 359-385.
-
(2002)
Theoret. Comput. Sci.
, vol.287
, pp. 359-385
-
-
Akhavi, A.1
-
5
-
-
35248863066
-
New partial key exposure attacks on RSA
-
J. Blömer, A. May, New partial key exposure attacks on RSA, in: Proc. Crypto'2003, Lecture Notes in Computer Science, vol. 2729, vol. 2729, Springer, New York, 2003, pp. 27-43. (Pubitemid 137636933)
-
(2003)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.2729
, pp. 27-43
-
-
Blomer, J.1
May, A.2
-
6
-
-
84948951675
-
Noisy polynomial interpolation and noisy Chinese remaindering
-
vol. 1807, Springer, New York
-
D. Bleichenbacher, P. Q. Nguyen, Noisy polynomial interpolation and noisy Chinese remaindering, in: Eurocrypt 2000, Lecture Notes in Computer Science, vol. 1807, vol. 1807, Springer, New York, 2000, pp. 53-69.
-
(2000)
Eurocrypt 2000, Lecture Notes in Computer Science
, vol.1807
, pp. 53-69
-
-
Bleichenbacher, D.1
Nguyen, P.Q.2
-
7
-
-
0032653013
-
On the complexity of Computing short linearly independent vectors and short bases in lattice
-
J. Blömer, J. P. Seifert, On the complexity of Computing short linearly independent vectors and short bases in lattice, Proc. 31th STOC (1999) 711-720.
-
(1999)
Proc. 31th STOC
, pp. 711-720
-
-
Blömer, J.1
Seifert, J.P.2
-
8
-
-
0033706605
-
Finding smooth integers in small intervals using CRT decoding
-
D. Boneh, Finding smooth integers in small intervals using CRT decoding, Proc. 32th STOC (2000) 265-272.
-
(2000)
Proc. 32th STOC
, pp. 265-272
-
-
Boneh, D.1
-
9
-
-
0001494997
-
Small solutions to polynomial equations, and low exponent RSA vulnerabilities
-
D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabilities, J. Cryptol. 10(1997) 233-260. (Pubitemid 127754574)
-
(1997)
Journal of Cryptology
, vol.10
, Issue.4
, pp. 233-260
-
-
Coppersmith, D.1
-
10
-
-
84958958956
-
Finding small solutions to small degree polynomials
-
Cryptography and Lattices
-
D. Coppersmith, Finding small solutions to small degree polynomials, in: Cryptography and Lattices, Lecture Notes in Computer Sciences, vol. 2146, Springer, New York, 2001, pp. 20-31. (Pubitemid 33329083)
-
(2001)
Lecture Notes in Computer Sciences
, Issue.2146
, pp. 20-31
-
-
Coppersmith, D.1
-
11
-
-
0028317496
-
An upper bound on the average number of iterations of the LLL algorithm
-
H. Daudé, B. Vallée, An upper bound on the average number of iterations of the LLL algorithm, Theoret. Comput. Sci. 123(1994) 115-395.
-
(1994)
Theoret. Comput. Sci.
, vol.123
, pp. 115-395
-
-
Daudé, H.1
Vallée, B.2
-
12
-
-
0011039877
-
Another NP-Complete partition problem and the complexity of computing short vectors in a lattice
-
University of Amsterdam, TR 81-04
-
P. van Emde Boas, Another NP-Complete partition problem and the complexity of computing short vectors in a lattice, Mathematics Department, University of Amsterdam, TR 81-04, 1981..
-
(1981)
Mathematics Department
-
-
Van Emde Boas, P.1
-
13
-
-
0003439018
-
-
English transl, Yale Univ Press, New Haven, CT, 1966
-
C. F. Gauss, Disquisitiones Arithmeticae. 1801; English transl, Yale Univ Press, New Haven, CT, 1966..
-
(1801)
Disquisitiones Arithmeticae
-
-
Gauss, C.F.1
-
14
-
-
0022285409
-
Algorithms to construct minkowski reduced and hermite reduced lattice bases
-
DOI 10.1016/0304-3975(85)90067-2
-
B. Helfrich, Algorithms to construct Minkowski reduced and Hermite reduced bases, Theor. Comput. Sci. 41(1985) 125-139. (Pubitemid 16593835)
-
(1985)
Theoretical Computer Science
, vol.41
, Issue.2-3
, pp. 125-139
-
-
Helfrich, B.1
-
15
-
-
0024748719
-
Polynomial time algorithms for finding integer relations among real numbers
-
J. Håstad, B. Just, J. C. Lagarias, C. P. Schnorr, Polynomial time algorithms for finding integer relations among real numbers, SIAM J. Comput. 18(1989) 859-881.
-
(1989)
SIAM J. Comput.
, vol.18
, pp. 859-881
-
-
Håstad, J.1
Just, B.2
Lagarias, J.C.3
Schnorr, C.P.4
-
16
-
-
0000126406
-
Minkowski's convex body theorem and integer programming
-
R. Kannan, Minkowski's Convex Body theorem and integer programming, Math. Oper. Res. 12(1984) 415-440.
-
(1984)
Math. Oper. Res.
, vol.12
, pp. 415-440
-
-
Kannan, R.1
-
17
-
-
84958953465
-
Segment LLL-reduction
-
Springer, New York
-
H. Koy, C. P. Schnorr, Segment LLL-Reduction, in: Cryptography and Lattices, Lecture Notes in Computer Sciences, vol. 2146, Springer, New York, 2001, pp. 67-80, //www.mi.informatik.uni-frankfurt.de/research/papers.html.
-
(2001)
Cryptography and Lattices, Lecture Notes in Computer Sciences
, vol.2146
, pp. 67-80
-
-
Koy, H.1
Schnorr, C.P.2
-
18
-
-
84958979810
-
Segment LLL-reduction with floating point orthogonalization
-
Cryptography and Lattices
-
H. Koy, C. P. Schnorr, Segment LLL-Reduction with Floating Point Orthogonalization, in: Cryptography and Lattices, Lecture Notes in Computer Sciences, vol. 2146, Springer, New York, 2001, pp. 81-96, //www.mi.informatik. uni-frankfurt.de/research/papers.html. (Pubitemid 33329088)
-
(2001)
Lecture Notes in Computer Science
, Issue.2146
, pp. 81-96
-
-
Koy, H.1
Schnorr, C.P.2
-
20
-
-
0020845921
-
Integer programming with a fixed number of variables
-
H. W. Lenstra, Integer programming with a fixed number of variables, Math. Oper. Res. 8(1983) 538-548.
-
(1983)
Math. Oper. Res.
, vol.8
, pp. 538-548
-
-
Lenstra, H.W.1
-
21
-
-
0003476369
-
-
SIAM Publications, 1995 first published by Prentice Hall, New Jersey
-
C. L. Lawson, R. J. Hanson, Solving least square problems, SIAM Publications, 1995 (first published by Prentice Hall, New Jersey 1974)..
-
(1974)
Solving Least Square Problems
-
-
Lawson, C.L.1
Hanson, R.J.2
-
22
-
-
34250244723
-
Factoring polynomials with rational coefficients
-
A. K. Lenstra, H. W. Lenstra, L. Lovász, Factoring Polynomials with Rational Coefficients, Math. Ann. 261(1982) 515-534.
-
(1982)
Math. Ann.
, vol.261
, pp. 515-534
-
-
Lenstra, A.K.1
Lenstra, H.W.2
Lovász, L.3
-
23
-
-
0003528294
-
An algorithmic theory of numbers
-
SIAM Publications, Philadelphia
-
L. Lovász, An algorithmic theory of numbers, in: Graphs and Convexity, CBMS-NSF Regional Conference Series in Applied Mathematics, 50, SIAM Publications, Philadelphia, 1986..
-
(1986)
Graphs and Convexity, CBMS-NSF Regional Conference Series in Applied Mathematics
, vol.50
-
-
Lovász, L.1
-
25
-
-
0035707359
-
The shortest vector in a lattice is hard to approximate to within some constant
-
DOI 10.1137/S0097539700373039, PII S0097539700373039
-
D. Micciancio, The shortest vector problem is NP-hard to approximate within some constant, in: Proceedings FOCS 1998, Final version: SIAM J. Comput. 30(2001) 2008-2035. (Pubitemid 34125447)
-
(2001)
SIAM Journal on Computing
, vol.30
, Issue.6
, pp. 2008-2035
-
-
Micciancio, D.1
-
26
-
-
84958950822
-
Improving lattice based cryptosystems using the hermite normal form
-
Cryptography and Lattices
-
D. Micciancio, A linear space algorithm for computing the Hermite normal form, in: Proceedings ISSAC 2001, Lecture Notes in Computer Sciences, vol. 2146, Springer, New York, 2001, pp. 126-145. (Pubitemid 33329091)
-
(2001)
Lecture Notes in Computer Science
, Issue.2146
, pp. 126-145
-
-
Micciancio, D.1
-
27
-
-
0012524599
-
-
Kluwer Academic Publishers, London
-
D. Micciancio, S. Goldwasser, Complexity of Lattice Problems, A Cryptographic Perspective, Kluwer Academic Publishers, London, 2002.
-
(2002)
Complexity of Lattice Problems, a Cryptographic Perspective
-
-
Micciancio, D.1
Goldwasser, S.2
-
28
-
-
84856016691
-
Reduction of lattice bases using modular arithmetic
-
Northwestern University, Evanston, Il. Oct., mehrotra, zhifeng@iems.nwu.edu.
-
S. Mehrotra, Z. Li, Reduction of lattice bases using modular arithmetic. TR. Dept. of Industrial Engeneering and Management Sciences, Northwestern University, Evanston, Il. Oct. 2001, mehrotra, zhifeng@iems.nwu.edu..
-
(2001)
TR. Dept. of Industrial Engeneering and Management Sciences
-
-
Mehrotra, S.1
Li, Z.2
-
29
-
-
33846870481
-
Lattice reduction in cryptology, an update. Algorithmic number theory
-
Springer, New York, full version
-
P. Q. Nguyen, J. Stern, Lattice reduction in cryptology, an update. Algorithmic number theory, in: Lecture Notes in Computer Sciences, vol. 1838, Springer, New York, 2000, pp. 85-112, full version http://www.di.ens.fr/pnguyen, stern/.
-
(2000)
Lecture Notes in Computer Sciences
, vol.1838
, pp. 85-112
-
-
Nguyen, P.Q.1
Stern, J.2
-
31
-
-
0023532388
-
Hierarchy of polynomial time lattice basis reduction algorithms
-
DOI 10.1016/0304-3975(87)90064-8
-
C. P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theoret. Comput. Sci. 53(1987) 201-224. (Pubitemid 18536041)
-
(1987)
Theoretical Computer Science
, vol.53
, Issue.2-3
, pp. 201-224
-
-
Schnorr, C.P.1
-
32
-
-
38249029857
-
A more efficient algorithm for lattice reduction
-
C. P. Schnorr, A more efficient algorithm for lattice reduction, J. Algor. 9(1988) 47-62.
-
(1988)
J. Algor.
, vol.9
, pp. 47-62
-
-
Schnorr, C.P.1
-
33
-
-
85029774337
-
Lattice basis reduction and solving subset sum problems
-
Springer, New York
-
C. P. Schnorr, M. Euchner, Lattice basis reduction and solving subset sum problems. Fundamentals of Comput. Theory, Lecture Notes in Computer Sciences, vol. 591, Springer, New York, pp. 68-85, 1991.
-
(1991)
Fundamentals of Comput. Theory, Lecture Notes in Computer Sciences
, vol.591
, pp. 68-85
-
-
Schnorr, C.P.1
Euchner, M.2
-
34
-
-
33846200465
-
The complete paper appeared
-
The complete paper appeared in Math. Programming Studies, 66A, 2, 1994, pp. 181-199..
-
(1994)
Math. Programming Studies
, vol.66 A
, Issue.2
, pp. 181-199
-
-
-
35
-
-
35248874386
-
Lattice reduction by random sampling and birthday methods
-
H. Alt, M. Habib Eds., Springer, New York
-
C. P. Schnorr, Lattice reduction by random sampling and birthday methods, in:H. Alt, M. Habib (Eds.), Proc. STACS 2003, Lecture Notes in Computer Sciences, vol. 2607, Springer, New York, 2003, pp. 145-156.
-
(2003)
Proc. STACS 2003, Lecture Notes in Computer Sciences
, vol.2607
, pp. 145-156
-
-
Schnorr, C.P.1
-
36
-
-
35248824581
-
-
Lecture Notes Universität Frankfurt, Frankfurt
-
C. P. Schnorr, Gittertheorie und Algorithmische Geometrie. Lecture Notes Universität Frankfurt, Frankfurt, 2004. http://www.mi.informatik.uni- frankfurt.de/index.html#teaching..
-
(2004)
Gittertheorie und Algorithmische Geometrie
-
-
Schnorr, C.P.1
-
37
-
-
0000962711
-
Factorization of univariate integer polynomials by diophantine approximation and improved lattice basis reduction algorithm
-
Springer, New York
-
A. Schönhage, Factorization of Univariate Integer Polynomials by Diophantine Approximation and Improved Lattice Basis Reduction Algorithm. Proc. 11-th Coll. Automata, Languages and Programming, Antwerpen 1984, Lecture Notes in Computer Sciences vol. 172, Springer, New York, pp. 436-447, 1984..
-
(1984)
Proc. 11-th Coll. Automata, Languages and Programming, Antwerpen 1984, Lecture Notes in Computer Sciences
, vol.172
, pp. 436-447
-
-
Schönhage, A.1
-
39
-
-
0003635009
-
-
TR 249, Swiss Federal Institute of Technology, ETH-Zurich, Department of Computer Science, Zurich, Switzerland, July
-
A. Storjohann, Faster Algorithms for Integer Lattice Basis Reduction. TR 249, Swiss Federal Institute of Technology, ETH-Zurich, Department of Computer Science, Zurich, Switzerland, July 1996. www.inf.ethz.ch/research/publications/ html..
-
(1996)
Faster Algorithms for Integer Lattice Basis Reduction
-
-
Storjohann, A.1
|