-
1
-
-
0031644084
-
2 is NP-hard for randomised reductions
-
2 is NP-hard for randomised reductions. Proc. 30th STOC, pp. 10-19, 1998.
-
(1998)
Proc. 30th STOC
, pp. 10-19
-
-
Ajtai, M.1
-
3
-
-
0001769755
-
A sieve algorithm for the shortest lattice vector problem
-
M. Ajtai, R. Kumar, and D. Sivakumar, A sieve algorithm for the shortest lattice vector problem. Proc. 33th STOC, 2001.
-
(2001)
Proc. 33th STOC
-
-
Ajtai, M.1
Kumar, R.2
Sivakumar, D.3
-
4
-
-
84985833502
-
The knapsack hash function proposed at Crypto'89 can be broken
-
Proc. Eurocrypt'91, Springer-Verlag
-
P. Camion, and J. Patarin, The knapsack hash function proposed at Crypto'89 can be broken. Proc. Eurocrypt'91, LNCS 457, Springer-Verlag, pp. 39-53, 1991.
-
(1991)
LNCS
, vol.457
, pp. 39-53
-
-
Camion, P.1
Patarin, J.2
-
6
-
-
84958655849
-
Public key cryptosystems from lattice reduction problems
-
Proc. Crypto'97, Springer-Verlag
-
O. Goldreich, S. Goldwasser, and S. Halevi, Public key cryptosystems from lattice reduction problems. Proc. Crypto'97, LNCS 1294, Springer-Verlag, pp. 112-131, 1997.
-
(1997)
LNCS
, vol.1294
, pp. 112-131
-
-
Goldreich, O.1
Goldwasser, S.2
Halevi, S.3
-
7
-
-
0022285409
-
Algorithms to construct Minkowski reduced and Hermite reduced bases
-
B. Helfrich, Algorithms to construct Minkowski reduced and Hermite reduced bases. Theor. Comp. Sc. 41, pp. 125-139, 1985.
-
(1985)
Theor. Comp. Sc.
, vol.41
, pp. 125-139
-
-
Helfrich, B.1
-
8
-
-
33947372739
-
Minkowski's convex body theorem and integer programming
-
R. Kannan, Minkowski's convex body theorem and integer programming. Mathematics of Operations Research 12 pp. 415-440, 1987,
-
(1987)
Mathematics of Operations Research
, vol.12
, pp. 415-440
-
-
Kannan, R.1
-
9
-
-
35248854917
-
-
Preliminary version
-
Preliminary version in Proc. 13th STOC, 1983.
-
(1983)
Proc. 13th STOC
-
-
-
10
-
-
0000827623
-
The Art of Computer Programming
-
Addison-Wesley, Reading
-
D. E. Knuth, The Art of Computer Programming, Vol 1, Fundamental Algorithms. 3rd Edidtion, Addison-Wesley, Reading, 1997.
-
(1997)
Fundamental Algorithms. 3rd Edidtion
, vol.1
-
-
Knuth, D.E.1
-
12
-
-
84958953465
-
Segment LLL-reduction of lattice bases
-
Proc. CaLC 2001, Springer-Verlag
-
H. Koy and C.P. Schnorr, Segment LLL-reduction of lattice bases. Proc. CaLC 2001, LNCS 2146, Springer-Verlag, pp. 67-80, 2001.
-
(2001)
LNCS
, vol.2146
, pp. 67-80
-
-
Koy, H.1
Schnorr, C.P.2
-
13
-
-
35248820568
-
Primale/duale Segment-Reduktion von Gitterbasen
-
Frankfurt, December
-
H. Koy, Primale/duale Segment-Reduktion von Gitterbasen. Slides of a lecture, Frankfurt, December 2000.
-
(2000)
Slides of a Lecture
-
-
Koy, H.1
-
14
-
-
84958979810
-
Segment LLL-reduction of lattice bases with floating point orthogonalization
-
Proc. CaLC 2001, Springer-Verlag
-
H. Koy and C.P. Schnorr, Segment LLL-reduction of lattice bases with floating point orthogonalization. Proc. CaLC 2001, LNCS 2146, Springer-Verlag, pp. 81-96, 2001.
-
(2001)
LNCS
, vol.2146
, pp. 81-96
-
-
Koy, H.1
Schnorr, C.P.2
-
15
-
-
34250244723
-
Factoring polynomials with rational coefficients
-
A. K. Lenstra, H. W. Lenstra, and L. Lovasz, Factoring polynomials with rational coefficients. Math. Ann. 261, pp. 515-534, 1982.
-
(1982)
Math. Ann.
, vol.261
, pp. 515-534
-
-
Lenstra, A.K.1
Lenstra, H.W.2
Lovasz, L.3
-
16
-
-
0032314321
-
The shortest vector in a lattice is NP-hard to approximate to within some constant
-
D. Micciancio, The shortest vector in a lattice is NP-hard to approximate to within some constant. Proc. 39th Symp. FOCS, pp. 92-98, 1998,
-
(1998)
Proc. 39th Symp. FOCS
, pp. 92-98
-
-
Micciancio, D.1
-
17
-
-
0035707359
-
-
full paper March
-
full paper SIAM Journal on Computing, 30 (6), pp. 2008-2035, March 2001.
-
(2001)
SIAM Journal on Computing
, vol.30
, Issue.6
, pp. 2008-2035
-
-
-
18
-
-
84957089305
-
Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto'97
-
Proc. Crypto'99, Springer-Verlag
-
P. Q. Nguyen, Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto'97. Proc. Crypto'99, LNCS 1666, Springer-Verlag, pp. 288-304, 1999.
-
(1999)
LNCS
, vol.1666
, pp. 288-304
-
-
Nguyen, P.Q.1
-
19
-
-
85088353421
-
Lattice reduction in cryptology: An update
-
Proc. ANTS-IV, Springer-Verlag, full version
-
P. Q. Nguyen and J. Stern, Lattice reduction in cryptology: an update. Proc. ANTS-IV, LNCS 1838, Springer-Verlag, pp. 188-112. full version http://www.di.ens.fr/∼{pnguyen,stern}/
-
LNCS
, vol.1838
, pp. 188-1112
-
-
Nguyen, P.Q.1
Stern, J.2
-
21
-
-
0023532388
-
A hierarchy of polynomial time lattice basis reduction algorithms
-
C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comp. Sc. 53, pp. 201-224, 1987.
-
(1987)
Theor. Comp. Sc.
, vol.53
, pp. 201-224
-
-
Schnorr, C.P.1
-
22
-
-
38249029857
-
A more efficient algorithm for lattice reduction
-
C.P. Schnorr, A more efficient algorithm for lattice reduction. J. of Algor. 9, 47-62, 1988.
-
(1988)
J. of Algor.
, vol.9
, pp. 47-62
-
-
Schnorr, C.P.1
-
23
-
-
85029774337
-
Lattice Basis Reduction and Solving Subset Sum Problems
-
Fundamentals of Comput. Theory, Springer, New York
-
C.P. Schnorr and M. Euchner, Lattice Basis Reduction and Solving Subset Sum Problems. Fundamentals of Comput. Theory, Lecture Notes in Comput. Sci., 591, Springer, New York, 1991, pp. 68-85.
-
(1991)
Lecture Notes in Comput. Sci.
, vol.591
, pp. 68-85
-
-
Schnorr, C.P.1
Euchner, M.2
-
24
-
-
33846200465
-
-
The complete paper appeared
-
The complete paper appeared in Math. Programming Studies, 66A, 2, pp. 181-199, 1994.
-
(1994)
Math. Programming Studies
, vol.66 A
, Issue.2
, pp. 181-199
-
-
-
25
-
-
84937428040
-
A Generalized Birthday Problem
-
Proceedings Crypto'02, Springer-Verlag, full version
-
D. Wagner, A Generalized Birthday Problem. Proceedings Crypto'02, LNCS 2442, Springer-Verlag, pp. 288-303, 2002. full version http://www.cs.berkeley.edu/∼daw/papers/
-
(2002)
LNCS
, vol.2442
, pp. 288-303
-
-
Wagner, D.1
|