메뉴 건너뛰기




Volumn 2146, Issue , 2001, Pages 81-96

Segment LLL-reduction with floating point orthogonalization

Author keywords

Floating point arithmetic; Householder reflexion; LLL reduction; Local LLL reduction; Scaled basis; Segment LLL reduction; Stability

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; CRYPTOGRAPHY;

EID: 84958979810     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-44670-2_8     Document Type: Conference Paper
Times cited : (23)

References (9)
  • 1
    • 84958655849 scopus 로고    scopus 로고
    • Public-key cryptosystems from lattice reduction problems
    • LNCS 1294, Springer-Verlag
    • O. Goldreich, S. Goldwasser, and S. Halevi, Public-key cryptosystems from lattice reduction problems. Proc. Crypto’97, LNCS 1294, Springer-Verlag, pp. 112-131, 1997.
    • (1997) Proc. Crypto’97 , pp. 112-131
    • Goldreich, O.1    Goldwasser, S.2    Halevi, S.3
  • 3
    • 34250244723 scopus 로고
    • Factoring polynomials with rational coefficients
    • A.K. Lenstra, H.W. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261, pp. 515-534, 1982.
    • (1982) Math. Ann , vol.261 , pp. 515-534
    • Lenstra, A.K.1    Lenstra, H.W.2    Lovász, L.3
  • 5
    • 84879106319 scopus 로고    scopus 로고
    • An optimal stable continued fraction algorithm for arbitrary dimension
    • Springer-Verlag
    • C. Rössner and C.P. Schnorr, An optimal stable continued fraction algorithm for arbitrary dimension. 5.-th IPCO, LNCS 1084, pp. 31-43, Springer-Verlag, 1996.
    • (1996) 5.-Th IPCO, LNCS , vol.1084 , pp. 31-43
    • Rössner, C.1    Schnorr, C.P.2
  • 6
    • 0023532388 scopus 로고
    • A hierarchy of polynomial time lattice basis reduction algorithms
    • C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theoretical Computer Science 53, pp. 201-224, 1987.
    • (1987) Theoretical Computer Science , vol.53 , pp. 201-224
    • Schnorr, C.P.1
  • 7
    • 38249029857 scopus 로고
    • A more efficient algorithm for lattice basis reduction
    • C.P. Schnorr, A more efficient algorithm for lattice basis reduction, J. Algorithms 9, pp. 47-62, 1988.
    • (1988) J. Algorithms , vol.9 , pp. 47-62
    • Schnorr, C.P.1
  • 8
    • 85029774337 scopus 로고
    • Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems
    • L. Budach, ed., LNCS, Springer-Verlag, (Complete paper in Mathematical Programming Studies 66A, No 2, pp.181-199, 1994.)
    • C.P. Schnorr and M. Euchner, Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems, Proc. Fundamentals of Computation Theory’91, L. Budach, ed., LNCS 529, Springer-Verlag, pp. 68-85, 1991. (Complete paper in Mathematical Programming Studies 66A, No 2, pp.181-199, 1994.)
    • (1991) Proc. Fundamentals of Computation Theory’91 , vol.529 , pp. 68-85
    • Schnorr, C.P.1    Euchner, M.2
  • 9
    • 0000962711 scopus 로고
    • Factorization of univariate integer polynomials by Diophantine approximation and improved lattice basis reduction algorithm
    • LNCS172, Springer-Verlag
    • A. Schönhage, Factorization of univariate integer polynomials by Diophantine approximation and improved lattice basis reduction algorithm, Proc. 11-th Coll. Automata, Languages and Programming, Antwerpen 1984, LNCS 172, Springer-Verlag, pp. 436-447, 1984.
    • (1984) Proc. 11-Th Coll. Automata, Languages and Programming, Antwerpen 1984 , pp. 436-447
    • Schönhage, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.