메뉴 건너뛰기




Volumn 25, Issue 12, 2011, Pages 621-630

Semi-supervised linear discriminant analysis

Author keywords

Classification; Discriminant analysis; Food authenticity

Indexed keywords

CHEMOMETRICES; CLASSIFICATION METHODS; FISHERS'S LINEAR DISCRIMINANT ANALYSIS; FITTING PROCEDURE; FOOD AUTHENTICITY; LINEAR DISCRIMINANT ANALYZE; LOW-DIMENSIONAL SPACES; MODEL FITTING; MULTIVARIATE DATA; SEMI-SUPERVISED;

EID: 84655162089     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1408     Document Type: Article
Times cited : (7)

References (29)
  • 1
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher RA. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936; 7: 179-188.
    • (1936) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 2
    • 0002263953 scopus 로고
    • The irises of the Gapse Peninsula
    • Anderson E. The irises of the Gapse Peninsula. Bull. Amer. Iris Soc. 1935; 59: 2-5.
    • (1935) Bull. Amer. Iris Soc. , vol.59 , pp. 2-5
    • Anderson, E.1
  • 3
    • 0001565436 scopus 로고
    • The utilization of multiple measurements in problems of biological classification
    • Radhakrishna Rao C. The utilization of multiple measurements in problems of biological classification. J. Roy. Stat. Soc. B Met. 1948; 10(2): 159-203.
    • (1948) J. Roy. Stat. Soc. B Met. , vol.10 , Issue.2 , pp. 159-203
    • Radhakrishna Rao, C.1
  • 4
    • 85163184482 scopus 로고
    • Structure modelling and discrimination of Catalan white wines
    • Larrechi MS, Franques MR, Ferre M, Rius FX. Structure modelling and discrimination of Catalan white wines. J. Chemom. 1989; 3: 261-274.
    • (1989) J. Chemom. , vol.3 , pp. 261-274
    • Larrechi, M.S.1    Franques, M.R.2    Ferre, M.3    Rius, F.X.4
  • 5
    • 0032765353 scopus 로고    scopus 로고
    • Multivariate strategies for classification based on NIR-spectra-with application to mayonnaise
    • Indahl UF, Sahni NS, Kirkhus B, Naes T. Multivariate strategies for classification based on NIR-spectra-with application to mayonnaise. Chemom. Intell. Lab. Syst. 1999; 49: 19-31.
    • (1999) Chemom. Intell. Lab. Syst. , vol.49 , pp. 19-31
    • Indahl, U.F.1    Sahni, N.S.2    Kirkhus, B.3    Naes, T.4
  • 6
    • 77951068160 scopus 로고    scopus 로고
    • Geographical origin identification of pure Sri Lanka tea infusions with electronic nose, electronic tongue and sensory profile analysis
    • Kovács Z, Dalmadi I, Lukács L, Sipos L, Szántai-Köhegyi K, Kókai Z, Fekete A. Geographical origin identification of pure Sri Lanka tea infusions with electronic nose, electronic tongue and sensory profile analysis. J. Classif. 2010; 24: 121-130.
    • (2010) J. Classif. , vol.24 , pp. 121-130
    • Kovács, Z.1    Dalmadi, I.2    Lukács, L.3    Sipos, L.4    Szántai-Köhegyi, K.5    Kókai, Z.6    Fekete, A.7
  • 7
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker M, Rayens W. Partial least squares for discrimination. J. Chemom. 2003; 17: 166-173.
    • (2003) J. Chemom. , vol.17 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 8
    • 34247272512 scopus 로고    scopus 로고
    • Selection of discriminant wavelength intervals in NIR spectrometry with genetic algorithms
    • Reynès C, de Souza S, Sabatier R, Figuères G, Vidal B. Selection of discriminant wavelength intervals in NIR spectrometry with genetic algorithms. J. Chemom. 2006; 20: 136-145.
    • (2006) J. Chemom. , vol.20 , pp. 136-145
    • Reynès, C.1    de Souza, S.2    Sabatier, R.3    Figuères, G.4    Vidal, B.5
  • 9
    • 0030328160 scopus 로고    scopus 로고
    • Authentication of food and food ingredients by near infrared spectroscopy
    • Downey G. Authentication of food and food ingredients by near infrared spectroscopy. J. Near Infrared Spectrosc. 1996; 4: 47-61.
    • (1996) J. Near Infrared Spectrosc. , vol.4 , pp. 47-61
    • Downey, G.1
  • 10
    • 33749252873 scopus 로고    scopus 로고
    • Chapelle O, Schölkopf B, Zien A (eds.). MIT Press: Cambridge, MA
    • Chapelle O, Schölkopf B, Zien A (eds.). Semi-Supervised Learning. MIT Press: Cambridge, MA, 2006.
    • (2006) Semi-Supervised Learning
  • 11
    • 77951252234 scopus 로고    scopus 로고
    • Synthesis Lectures on Artificial Intelligence and Machine Learning
    • Zhu X, Goldberg AB. Introduction to Semi-Supervised Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 2009; 3(1): 1-130.
    • (2009) Introduction to Semi-Supervised Learning , vol.3 , Issue.1 , pp. 1-130
    • Zhu, X.1    Goldberg, A.B.2
  • 12
    • 84995007758 scopus 로고    scopus 로고
    • Computation of robust estimates of multivariate location and shape
    • Rocke DM, Woodruff DL. Computation of robust estimates of multivariate location and shape. Stat. Neerl. 2008; 47(1): 27-42.
    • (2008) Stat. Neerl. , vol.47 , Issue.1 , pp. 27-42
    • Rocke, D.M.1    Woodruff, D.L.2
  • 13
    • 85153978884 scopus 로고    scopus 로고
    • Feature Extraction and Dimension Reduction with Applications to Classification and the Analysis of Co-occurrence Data. PhD thesis, Stanford University
    • Zhu M. Feature Extraction and Dimension Reduction with Applications to Classification and the Analysis of Co-occurrence Data. PhD thesis, Stanford University, 2001.
    • (2001)
    • Zhu, M.1
  • 16
    • 0000734588 scopus 로고
    • Normal discrimination with unclassified observations
    • O'Neill TJ. Normal discrimination with unclassified observations. J. Am. Stat. Assoc. 1978; 73: 821-826.
    • (1978) J. Am. Stat. Assoc. , vol.73 , pp. 821-826
    • O'Neill, T.J.1
  • 17
    • 0018128173 scopus 로고
    • The efficiency of a linear discriminant function based on unclassified initial samples
    • Ganesalingam S, McLachlan GJ. The efficiency of a linear discriminant function based on unclassified initial samples. Biometrika 1978; 65(3): 658-662.
    • (1978) Biometrika , vol.65 , Issue.3 , pp. 658-662
    • Ganesalingam, S.1    McLachlan, G.J.2
  • 18
    • 33645061488 scopus 로고    scopus 로고
    • Using unlabelled data to update classification rules with applications in food authenticity studies
    • Dean N, Murphy TB, Downey G. Using unlabelled data to update classification rules with applications in food authenticity studies. J. Roy. Stat. Soc. C-App 2006; 55: 1-14.
    • (2006) J. Roy. Stat. Soc. C-App , vol.55 , pp. 1-14
    • Dean, N.1    Murphy, T.B.2    Downey, G.3
  • 19
    • 33846943371 scopus 로고    scopus 로고
    • Generalized mixture models, semi-supervised learning, and unknown class inference
    • Frame SJ, Jammalamadaka SR. Generalized mixture models, semi-supervised learning, and unknown class inference. Adv. Data Anal. Classif. 2007; 1(1): 23-38.
    • (2007) Adv. Data Anal. Classif. , vol.1 , Issue.1 , pp. 23-38
    • Frame, S.J.1    Jammalamadaka, S.R.2
  • 20
    • 74149093702 scopus 로고    scopus 로고
    • Model-based classification using latent Gaussian mixture models
    • McNicholas PD. Model-based classification using latent Gaussian mixture models. J. Stat. Plan. Infer. 2010; 140: 1175-1181.
    • (2010) J. Stat. Plan. Infer. , vol.140 , pp. 1175-1181
    • McNicholas, P.D.1
  • 21
    • 84870288143 scopus 로고    scopus 로고
    • Variable selection and updating in model-based discriminant analysis for high-dimensional data with food authenticity applications
    • Murphy TB, Dean N, Raftery AE. Variable selection and updating in model-based discriminant analysis for high-dimensional data with food authenticity applications. Ann. Appl. Stat. 2010; 4(1): 396-421.
    • (2010) Ann. Appl. Stat. , vol.4 , Issue.1 , pp. 396-421
    • Murphy, T.B.1    Dean, N.2    Raftery, A.E.3
  • 22
    • 34548688233 scopus 로고    scopus 로고
    • A comparison of model-based and regression classification techniques applied to near infrared spectroscopic data in food authentication studies
    • Toher D, Downey G, Murphy TB. A comparison of model-based and regression classification techniques applied to near infrared spectroscopic data in food authentication studies. Chemometr. Intell. Lab. 2007; 89: 102-115.
    • (2007) Chemometr. Intell. Lab. , vol.89 , pp. 102-115
    • Toher, D.1    Downey, G.2    Murphy, T.B.3
  • 23
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier GW. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950; 78: 1-3.
    • (1950) Mon. Weather Rev. , vol.78 , pp. 1-3
    • Brier, G.W.1
  • 24
    • 0001757440 scopus 로고
    • Multivariate data analysis as a discriminating method of the origin of wines
    • Forina M, Armanino C, Ubigli M. Multivariate data analysis as a discriminating method of the origin of wines. Vitus 1986; 25: 189-201.
    • (1986) Vitus , vol.25 , pp. 189-201
    • Forina, M.1    Armanino, C.2    Ubigli, M.3
  • 25
    • 0033407992 scopus 로고    scopus 로고
    • Chemometric processing of visible and near infrared reflectance spectra for species identification in selected raw homogenised meats
    • McElhinney J, Downey G, Fearn T. Chemometric processing of visible and near infrared reflectance spectra for species identification in selected raw homogenised meats. J. Near Infrared. Spec. 1999; 7: 145-154.
    • (1999) J. Near Infrared. Spec. , vol.7 , pp. 145-154
    • McElhinney, J.1    Downey, G.2    Fearn, T.3
  • 26
    • 85153986828 scopus 로고    scopus 로고
    • gclus: Clustering Graphics, R package version 1.2.
    • Hurley C. gclus: Clustering Graphics, 2004. R package version 1.2.
    • (2004)
    • Hurley, C.1
  • 27
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing: Vienna, Austria, ISBN 3-900051-07-0.
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2007. ISBN 3-900051-07-0.
    • (2007) R: A Language and Environment for Statistical Computing
  • 28
    • 0037351069 scopus 로고    scopus 로고
    • Feature extraction for nonparametric discriminant analysis
    • Zhu M, Hastie T. Feature extraction for nonparametric discriminant analysis. J. Comput. Graph. Stat. 2003; 12: 101-120.
    • (2003) J. Comput. Graph. Stat. , vol.12 , pp. 101-120
    • Zhu, M.1    Hastie, T.2
  • 29
    • 33845811433 scopus 로고    scopus 로고
    • Discriminant analysis with common principal components
    • Zhu M. Discriminant analysis with common principal components. Biometrika 2006; 93: 1018-1024.
    • (2006) Biometrika , vol.93 , pp. 1018-1024
    • Zhu, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.