메뉴 건너뛰기




Volumn , Issue , 2011, Pages 143-152

Multi-modal constraint propagation for heterogeneous image clustering

Author keywords

Multi modal analysis; Pairwise constraint propagation

Indexed keywords

CLOSED FORM SOLUTIONS; CONSTRAINED CLUSTERING; CONSTRAINT PROPAGATION; DATA SETS; EFFECTIVE SOLUTION; IMAGE CLUSTERING; LABEL PROPAGATION; MULTI-MODAL; MULTI-MODAL DATA; MULTI-MODAL DATASET; MULTI-MODAL IMAGE; MULTIPLE REPRESENTATION; PAIRWISE CONSTRAINTS; QUADRATIC OPTIMIZATION; SUB-PROBLEMS;

EID: 84455173161     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2072298.2072318     Document Type: Conference Paper
Times cited : (31)

References (27)
  • 1
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • S. Basu, M. Bilenko, and R. Mooney. A probabilistic framework for semi-supervised clustering. In SIGKDD, 2004.
    • (2004) SIGKDD
    • Basu, S.1    Bilenko, M.2    Mooney, R.3
  • 3
    • 84455208172 scopus 로고    scopus 로고
    • Group-theoretic algorithms for matrix multiplication
    • H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic algorithms for matrix multiplication. In FOCS, 2004.
    • (2004) FOCS
    • Cohn, H.1    Kleinberg, R.2    Szegedy, B.3    Umans, C.4
  • 4
    • 85023205150 scopus 로고
    • Matrix multiplication via arithmetic progressions
    • D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of symbolic computation, 9(3):251-280, 1990.
    • (1990) Journal of Symbolic Computation , vol.9 , Issue.3 , pp. 251-280
    • Coppersmith, D.1    Winograd, S.2
  • 5
    • 50649117726 scopus 로고    scopus 로고
    • Learning globally-consistent local distance functions for shape-based image retrieval and classification
    • A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-consistent local distance functions for shape-based image retrieval and classification. In ICCV, 2007.
    • (2007) ICCV
    • Frome, A.1    Singer, Y.2    Sha, F.3    Malik, J.4
  • 6
    • 84455169496 scopus 로고    scopus 로고
    • Symmetric graph regularized constraint propagation
    • Z. Fu, Z. Lu, H. Ip, Y. Peng, and H. Lu. Symmetric graph regularized constraint propagation. In AAAI, 2011.
    • (2011) AAAI
    • Fu, Z.1    Lu, Z.2    Ip, H.3    Peng, Y.4    Lu, H.5
  • 7
    • 84883069149 scopus 로고    scopus 로고
    • Web image clustering by consistent utilization of visual features and surrounding texts
    • B. Gao, T. Liu, T. Qin, X. Zheng, Q. Cheng, and W. Ma. Web image clustering by consistent utilization of visual features and surrounding texts. In ACM Multimedia, 2005.
    • (2005) ACM Multimedia
    • Gao, B.1    Liu, T.2    Qin, T.3    Zheng, X.4    Cheng, Q.5    Ma, W.6
  • 9
    • 31844447616 scopus 로고    scopus 로고
    • Semi-supervised graph clustering: A kernel approach
    • B. Kulis, S. Basu, I. Dhillon, and R. Mooney. Semi-supervised graph clustering: a kernel approach. In ICML, 2005.
    • (2005) ICML
    • Kulis, B.1    Basu, S.2    Dhillon, I.3    Mooney, R.4
  • 10
    • 56449130871 scopus 로고    scopus 로고
    • Pairwise constraint propagation by semidefinite programming for semi-supervised classification
    • Z. Li, J. Liu, and X. Tang. Pairwise constraint propagation by semidefinite programming for semi-supervised classification. In ICML, 2008.
    • (2008) ICML
    • Li, Z.1    Liu, J.2    Tang, X.3
  • 11
    • 51949113919 scopus 로고    scopus 로고
    • Constrained spectral clustering through affinity propagation
    • Z. Lu and M. Carreira-Perpinán. Constrained spectral clustering through affinity propagation. In CVPR, 2008.
    • (2008) CVPR
    • Lu, Z.1    Carreira-Perpinán, M.2
  • 12
    • 70450162971 scopus 로고    scopus 로고
    • Image categorization by learning with context and consistency
    • Z. Lu and H. Ip. Image categorization by learning with context and consistency. In CVPR, 2009.
    • (2009) CVPR
    • Lu, Z.1    Ip, H.2
  • 13
    • 84455208171 scopus 로고    scopus 로고
    • Constrained spectral clustering via exhaustive and efficient constraint propagation
    • Z. Lu and H. Ip. Constrained spectral clustering via exhaustive and efficient constraint propagation. In ECCV, 2010.
    • (2010) ECCV
    • Lu, Z.1    Ip, H.2
  • 18
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-A knowledge reuse framework for combining multiple partitions
    • A. Strehl and J. Ghosh. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research, 3:583-617, 2003.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 19
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416, 2007.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 20
    • 0001898293 scopus 로고    scopus 로고
    • Clustering with instance-level constraints
    • K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In ICML, 2000.
    • (2000) ICML
    • Wagstaff, K.1    Cardie, C.2
  • 21
    • 79951757648 scopus 로고    scopus 로고
    • Active spectral clustering
    • X. Wang and I. Davidson. Active spectral clustering. In ICDM, 2010.
    • (2010) ICDM
    • Wang, X.1    Davidson, I.2
  • 22
    • 77956209057 scopus 로고    scopus 로고
    • Flexible constrained spectral clustering
    • X. Wang and I. Davidson. Flexible constrained spectral clustering. In SIGKDD, 2010.
    • (2010) SIGKDD
    • Wang, X.1    Davidson, I.2
  • 23
    • 13444282390 scopus 로고    scopus 로고
    • Multi-model similarity propagation and its application for web image retrieval
    • X. Wang, W. Ma, G. Xue, and X. Li. Multi-model similarity propagation and its application for web image retrieval. In ACM Multimedia, 2004.
    • (2004) ACM Multimedia
    • Wang, X.1    Ma, W.2    Xue, G.3    Li, X.4
  • 24
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning with application to clustering with side-information. In NIPS, 2003.
    • (2003) NIPS
    • Xing, E.1    Ng, A.2    Jordan, M.3    Russell, S.4
  • 25
    • 70450187127 scopus 로고    scopus 로고
    • Fast normalized cut with linear constraints
    • L. Xu, W. Li, and D. Schuurmans. Fast normalized cut with linear constraints. In CVPR, 2009.
    • (2009) CVPR
    • Xu, L.1    Li, W.2    Schuurmans, D.3
  • 27
    • 51949083910 scopus 로고    scopus 로고
    • Spectral clustering and transductive learning with multiple views
    • D. Zhou and C. Burges. Spectral clustering and transductive learning with multiple views. In ICML, 2007.
    • (2007) ICML
    • Zhou, D.1    Burges, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.