메뉴 건너뛰기




Volumn , Issue , 2011, Pages

An efficient approach to detecting concept-evolution in network data streams

Author keywords

anomaly detection; concept drift; concept evolution; novel class detection

Indexed keywords

ANOMALY DETECTION; BENCHMARK DATA; CONCEPT-DRIFT; CONCEPT-EVOLUTION; DATA CLASSIFICATION; DATA STREAM; ELIMINATING NOISE; IN-NETWORK MANAGEMENT; NETWORK DATA; REAL-WORLD NETWORKS; RESEARCH ISSUES; TRAFFIC FLOW;

EID: 84255200933     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ATNAC.2011.6096654     Document Type: Conference Paper
Times cited : (4)

References (16)
  • 3
    • 0035789299 scopus 로고    scopus 로고
    • Mining timechanging data streams
    • G. Hulten, L. Spencer, and P. Domingos. "Mining timechanging data streams". In ACM SIGKDD, pages 97-106, 2001.
    • (2001) ACM SIGKDD , pp. 97-106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 4
    • 32344442287 scopus 로고    scopus 로고
    • Combining proactive and reactive predictions for data streams
    • Y. Yang, X. Wu, and X. Zhu. "Combining proactive and reactive predictions for data streams". In ACM SIGKDD, pages 710-715, 2005.
    • (2005) ACM SIGKDD , pp. 710-715
    • Yang, Y.1    Wu, X.2    Zhu, X.3
  • 5
    • 77952415079 scopus 로고    scopus 로고
    • Mining conceptdrifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. S. Yu, and J. Han. "Mining conceptdrifting data streams using ensemble classifiers". In ACM SIGKDD, pages 226-235, 2003.
    • (2003) ACM SIGKDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 9
    • 34548324813 scopus 로고    scopus 로고
    • Multivariate online anomaly detection using kernel recursive least squares
    • Alaska, May
    • T. Ahmed, M. Coates, and A. Lakhina. " Multivariate online anomaly detection using kernel recursive least squares". Proc. IEEE Infocom, Anchorage, Alaska, May 2007.
    • (2007) Proc. IEEE Infocom, Anchorage
    • Ahmed, T.1    Coates, M.2    Lakhina, A.3
  • 10
    • 85059110748 scopus 로고    scopus 로고
    • Novelty detection: A review-part 1: Statistical approaches, part 2: Neural network based Approaches
    • Dec
    • M. Markou and S. Singh. "Novelty detection: A review-part 1: Statistical approaches, part 2: Neural network based Approaches". In Signal Processing, volum 83, Issue 12, pages 2499-2521, Dec 2003.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 11
    • 77952415079 scopus 로고    scopus 로고
    • Mining conceptdrifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. S. Yu, and J. Han. "Mining conceptdrifting data streams using ensemble classifiers". In ACM SIGKDD, pages 226-235, 2003.
    • (2003) ACM SIGKDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 13
    • 70349952316 scopus 로고    scopus 로고
    • Integrating novel class detection with classification for concept-drifting data streams
    • M. M. Masud, J. Gao, L. Khan, J. Han, and B. M. Thuraisingham. "Integrating novel class detection with classification for concept-drifting data streams". In ECML PKDD, volume 2, pages 79-94, 2009.
    • (2009) ECML PKDD , vol.2 , pp. 79-94
    • Masud, M.M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.M.5
  • 14
    • 56749157104 scopus 로고    scopus 로고
    • Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks
    • E. J. Spinosa, A. P. de Leon F. de Carvalho, and J. Gama. "Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks". In ACM SAC, pages 976-980, 2008.
    • (2008) ACM SAC , pp. 976-980
    • Spinosa, E.J.1    De Leon, A.P.2    De Carvalho, F.3    Gama, J.4
  • 15
    • 31844453033 scopus 로고    scopus 로고
    • Using additive expert ensembles to cope with concept drift
    • J. Kolter and M. Maloof. " Using additive expert ensembles to cope with concept drift". In ICML, pages 449-456, 2005.
    • (2005) ICML , pp. 449-456
    • Kolter, J.1    Maloof, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.