메뉴 건너뛰기




Volumn 4, Issue 1, 2012, Pages 59-66

Bayesian modeling for large spatial datasets

Author keywords

Bayesian spatial statistics; Gaussian predictive process

Indexed keywords

BAYESIAN HIERARCHICAL MODEL; BAYESIAN MODELING; COMPUTATIONAL EXPENSE; DATA SETS; GAUSSIANS; HIERARCHICAL MODELING; MARKOV CHAIN MONTE CARLO METHOD; PREDICTIVE PROCESS; SCIENTIFIC DATA; SPATIAL DATASETS; SPATIAL EFFECT; SPATIAL MODELING; SPATIAL PROCESS MODEL; SPATIAL STATISTICS;

EID: 83655201401     PISSN: 19395108     EISSN: 19390068     Source Type: Journal    
DOI: 10.1002/wics.187     Document Type: Article
Times cited : (25)

References (59)
  • 11
    • 0000832522 scopus 로고
    • Nonparametric estimation of nonstationary spatial covariance structure.
    • Sampson PD, Guttorp P. Nonparametric estimation of nonstationary spatial covariance structure. J Am Stat Assoc 1992, 87:108-119.
    • (1992) J Am Stat Assoc , vol.87 , pp. 108-119
    • Sampson, P.D.1    Guttorp, P.2
  • 12
    • 84993734384 scopus 로고    scopus 로고
    • Multiresolution models for nonstationary spatial covariance functions.
    • Nychka D, Wikle CK, Royle JA. Multiresolution models for nonstationary spatial covariance functions. Stat Model Int J 2002, 2:315-331.
    • (2002) Stat Model Int J , vol.2 , pp. 315-331
    • Nychka, D.1    Wikle, C.K.2    Royle, J.A.3
  • 14
    • 0042401905 scopus 로고    scopus 로고
    • Periodogram and other spectral methods for nonstationary spatial processes.
    • Fuentes M. Periodogram and other spectral methods for nonstationary spatial processes. Biometrika 2002, 89:197-210.
    • (2002) Biometrika , vol.89 , pp. 197-210
    • Fuentes, M.1
  • 15
    • 23844472403 scopus 로고    scopus 로고
    • A formal test for nonstationarity of spatial stochastic processes.
    • Fuentes M. A formal test for nonstationarity of spatial stochastic processes. J Multivariate Anal 2005, 96:30-55.
    • (2005) J Multivariate Anal , vol.96 , pp. 30-55
    • Fuentes, M.1
  • 19
    • 2142734871 scopus 로고    scopus 로고
    • Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics.
    • Zhang H. Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J Am Stat Assoc 2004, 99:250-261.
    • (2004) J Am Stat Assoc , vol.99 , pp. 250-261
    • Zhang, H.1
  • 21
    • 0000497615 scopus 로고
    • Estimation and model identification for continuous spatial processes.
    • Vecchia AV. Estimation and model identification for continuous spatial processes. J R Stat Soc Ser B 1988, 50:297-312.
    • (1988) J R Stat Soc Ser B , vol.50 , pp. 297-312
    • Vecchia, A.V.1
  • 22
    • 2442600120 scopus 로고    scopus 로고
    • Approximating likelihoods for large spatial datasets.
    • Stein ML, Chi Z, Welty LJ. Approximating likelihoods for large spatial datasets. J R Stat Soc Ser B 2004, 66:275-296.
    • (2004) J R Stat Soc Ser B , vol.66 , pp. 275-296
    • Stein, M.L.1    Chi, Z.2    Welty, L.J.3
  • 23
    • 33947194951 scopus 로고    scopus 로고
    • Approximate likelihood for large irregularly spaced spatial data.
    • Fuentes M. Approximate likelihood for large irregularly spaced spatial data. J Am Stat Assoc 2007, 102:321-331.
    • (2007) J Am Stat Assoc , vol.102 , pp. 321-331
    • Fuentes, M.1
  • 24
    • 33750007327 scopus 로고    scopus 로고
    • Covariance tapering for interpolation of large spatial datasets.
    • Furrer R, Genton MG, Nychka D. Covariance tapering for interpolation of large spatial datasets. J Comput Graph Stat 2006, 15:502-523.
    • (2006) J Comput Graph Stat , vol.15 , pp. 502-523
    • Furrer, R.1    Genton, M.G.2    Nychka, D.3
  • 25
    • 70049091991 scopus 로고    scopus 로고
    • Covariance tapering for likelihood-based estimation in large spatial data sets.
    • Kaufman CG, Schervish MJ, Nychka DW. Covariance tapering for likelihood-based estimation in large spatial data sets. J Am Stat Assoc 2009, 103:1545-1555.
    • (2009) J Am Stat Assoc , vol.103 , pp. 1545-1555
    • Kaufman, C.G.1    Schervish, M.J.2    Nychka, D.W.3
  • 26
    • 70049089877 scopus 로고    scopus 로고
    • Fixed-domain asymptotic properties of tapered maximum likelihood estimators.
    • Du J, Zhang H, Mandrekar VS. Fixed-domain asymptotic properties of tapered maximum likelihood estimators. Ann Stat 2009, 37:3330-3361.
    • (2009) Ann Stat , vol.37 , pp. 3330-3361
    • Du, J.1    Zhang, H.2    Mandrekar, V.S.3
  • 27
    • 0036522614 scopus 로고    scopus 로고
    • Fitting Gaussian Markov random fields to Gaussian fields.
    • Rue H, Tjelmeland H. Fitting Gaussian Markov random fields to Gaussian fields. Scand J Stat 2002, 29:31-49.
    • (2002) Scand J Stat , vol.29 , pp. 31-49
    • Rue, H.1    Tjelmeland, H.2
  • 29
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion).
    • Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J R Stat Soc Ser B 2009, 71:1-35.
    • (2009) J R Stat Soc Ser B , vol.71 , pp. 1-35
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 31
    • 13444251351 scopus 로고    scopus 로고
    • Nonstationary multivariate process modelling through spatially varying coregionalization.
    • Gelfand AE, Schmidt A, Banerjee S, Sirmans CF. Nonstationary multivariate process modelling through spatially varying coregionalization. Test 2004, 13:263-312.
    • (2004) Test , vol.13 , pp. 263-312
    • Gelfand, A.E.1    Schmidt, A.2    Banerjee, S.3    Sirmans, C.F.4
  • 32
    • 0042744714 scopus 로고    scopus 로고
    • Spatial modeling with spatially varying coefficient processes.
    • Gelfand AE, Kim H, Sirmans CF, Banerjee S. Spatial modeling with spatially varying coefficient processes. J Am Stat Assoc 2003, 98:387-396.
    • (2003) J Am Stat Assoc , vol.98 , pp. 387-396
    • Gelfand, A.E.1    Kim, H.2    Sirmans, C.F.3    Banerjee, S.4
  • 33
    • 33745999511 scopus 로고    scopus 로고
    • Spatial modelling using a new class of nonstationary covariance functions.
    • Paciorek CJ, Schervish MJ. Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 2006, 17:483-506.
    • (2006) Environmetrics , vol.17 , pp. 483-506
    • Paciorek, C.J.1    Schervish, M.J.2
  • 34
    • 0000414912 scopus 로고    scopus 로고
    • A dimension-reduced approach to space-time Kalman filtering.
    • Wikle C, Cressie N. A dimension-reduced approach to space-time Kalman filtering. Biometrika 1999, 86:815-829.
    • (1999) Biometrika , vol.86 , pp. 815-829
    • Wikle, C.1    Cressie, N.2
  • 35
    • 0034343415 scopus 로고    scopus 로고
    • Smoothing spline ANOVA models for large data sets with Bernoulli observations and the randomized GACV.
    • Lin X, Wahba G, Xiang D, Gao F, Klein R, Klein B. Smoothing spline ANOVA models for large data sets with Bernoulli observations and the randomized GACV. Ann Stat 2000, 28:1570-1600.
    • (2000) Ann Stat , vol.28 , pp. 1570-1600
    • Lin, X.1    Wahba, G.2    Xiang, D.3    Gao, F.4    Klein, R.5    Klein, B.6
  • 38
    • 3042679820 scopus 로고    scopus 로고
    • Flexible spatial models based on the fast Fourier transform (FFT) for cokriging.
    • Ver Hoef JM, Cressie NAC, Barry RP. Flexible spatial models based on the fast Fourier transform (FFT) for cokriging. J Comput Graph Stat 2004, 13:265-282.
    • (2004) J Comput Graph Stat , vol.13 , pp. 265-282
    • Ver Hoef, J.M.1    Cressie, N.A.C.2    Barry, R.P.3
  • 39
    • 33947661458 scopus 로고    scopus 로고
    • Computational techniques for spatial logistic regression with large datasets.
    • Paciorek CJ. Computational techniques for spatial logistic regression with large datasets. Comput Stat Data Anal 2007, 51:3631-3653.
    • (2007) Comput Stat Data Anal , vol.51 , pp. 3631-3653
    • Paciorek, C.J.1
  • 40
    • 41249085244 scopus 로고    scopus 로고
    • Spatial variation of total column ozone on a global scale.
    • Stein ML. Spatial variation of total column ozone on a global scale. Ann Appl Stat 2007, 1:191-210.
    • (2007) Ann Appl Stat , vol.1 , pp. 191-210
    • Stein, M.L.1
  • 41
    • 37849010186 scopus 로고    scopus 로고
    • A modeling approach for large spatial datasets.
    • Stein ML. A modeling approach for large spatial datasets. J Korean Stat Soc 2008, 37:3-10.
    • (2008) J Korean Stat Soc , vol.37 , pp. 3-10
    • Stein, M.L.1
  • 43
  • 44
    • 78649402992 scopus 로고    scopus 로고
    • Hierarchical spatial process models for multiple traits in large genetic trials.
    • Banerjee S, Finley AO, Waldmann P, Ericsson T. Hierarchical spatial process models for multiple traits in large genetic trials. J Am Stat Assoc 2010, 105:506-521.
    • (2010) J Am Stat Assoc , vol.105 , pp. 506-521
    • Banerjee, S.1    Finley, A.O.2    Waldmann, P.3    Ericsson, T.4
  • 45
    • 42349084895 scopus 로고    scopus 로고
    • Bivariate binomial spatial modeling of Loa loa Prevalence in tropical Africa (with discussion).
    • Crainiceanu CM, Diggle PJ, Rowlingson B. Bivariate binomial spatial modeling of Loa loa Prevalence in tropical Africa (with discussion). J Am Stat Assoc 2008, 103:21-37.
    • (2008) J Am Stat Assoc , vol.103 , pp. 21-37
    • Crainiceanu, C.M.1    Diggle, P.J.2    Rowlingson, B.3
  • 46
    • 58249107920 scopus 로고    scopus 로고
    • Hierarchical models for spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States.
    • Latimer AM, Banerjee S, Sang H, Mosher E, Jr. Silander JA. Hierarchical models for spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States. Ecol Lett 2009, 12:144-54.
    • (2009) Ecol Lett , vol.12 , pp. 144-154
    • Latimer, A.M.1    Banerjee, S.2    Sang, H.3    Mosher Jr., E.4    Silander, J.A.5
  • 49
    • 62849106305 scopus 로고    scopus 로고
    • Improving the performance of predictive process modeling for large datasets.
    • Finley AO, Sang H, Banerjee S, Gelfand AE. Improving the performance of predictive process modeling for large datasets. Comput Stat Data Anal 2009, 53: 2873-2884.
    • (2009) Comput Stat Data Anal , vol.53 , pp. 2873-2884
    • Finley, A.O.1    Sang, H.2    Banerjee, S.3    Gelfand, A.E.4
  • 51
    • 0032525684 scopus 로고    scopus 로고
    • An algorithm for the construction of spatial coverage designs with implementation in SPLUS
    • Royle JA, Nychka D. An algorithm for the construction of spatial coverage designs with implementation in SPLUS. Comput Geosci 1998, 24:479-488.
    • (1998) Comput Geosci , vol.24 , pp. 479-488
    • Royle, J.A.1    Nychka, D.2
  • 54
    • 20744444147 scopus 로고    scopus 로고
    • Univariate and multivariate dynamic spatial modelling.
    • Gelfand AE, Banerjee S, Gamerman D. Univariate and multivariate dynamic spatial modelling. Environmetrics 2005, 16:465-479.
    • (2005) Environmetrics , vol.16 , pp. 465-479
    • Gelfand, A.E.1    Banerjee, S.2    Gamerman, D.3
  • 55
    • 83655166681 scopus 로고    scopus 로고
    • Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes.
    • In Press.
    • Finley AO, Banerjee S, Gelfand AE. Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes. J Geogr Inf Syst. In Press.
    • J Geogr Inf Syst.
    • Finley, A.O.1    Banerjee, S.2    Gelfand, A.E.3
  • 56
    • 34247539569 scopus 로고    scopus 로고
    • spBayes: an R package for univariate and multivariate hierarchical point-referenced spatial models.
    • Finley AO, Banerjee S, Carlin BP. spBayes: an R package for univariate and multivariate hierarchical point-referenced spatial models. J Stat Softw 2007, 19:4.
    • (2007) J Stat Softw , vol.19 , pp. 4
    • Finley, A.O.1    Banerjee, S.2    Carlin, B.P.3
  • 58
    • 0001890697 scopus 로고
    • On deriving the inverse of a sum of matrices.
    • Henderson HV, Searle SR. On deriving the inverse of a sum of matrices. SIAM Rev 1981, 23:53-60.
    • (1981) SIAM Rev , vol.23 , pp. 53-60
    • Henderson, H.V.1    Searle, S.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.